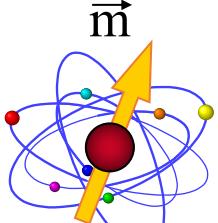


Lecture 9

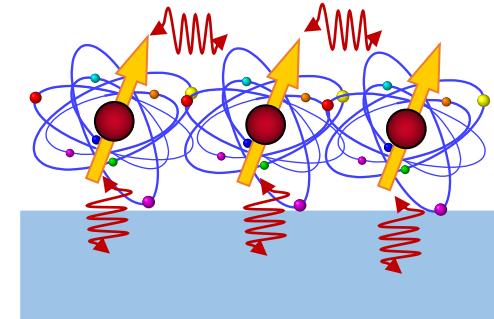
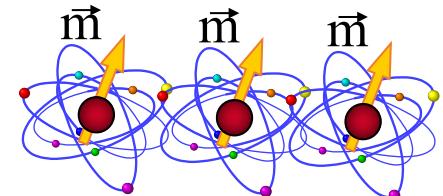
*Spin dynamics and spin-transfer-torque
at atomic scale*

The spintronics “goose game”

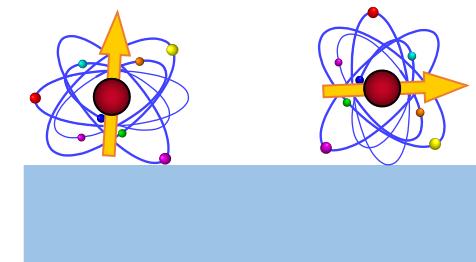
Atom magnetism



interactions between spins and with the supporting substrate

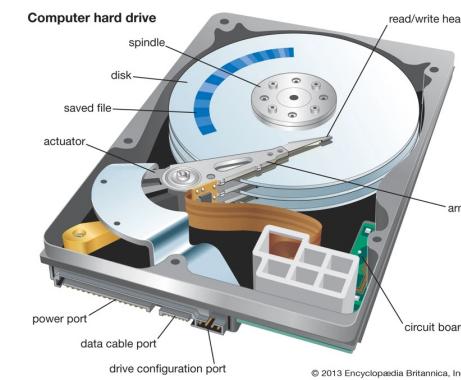
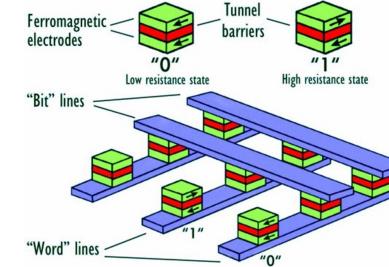


magnetic moment in a cluster and/or on a support

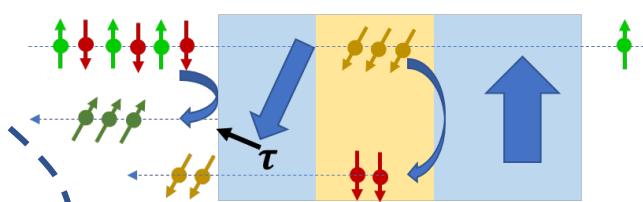


Magnetization easy axis

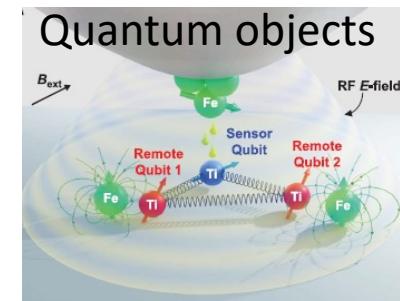
applications



STT - SOT

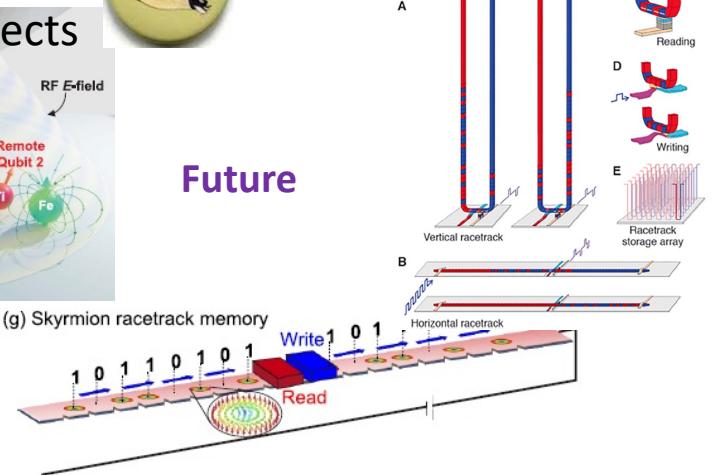


Quantum objects

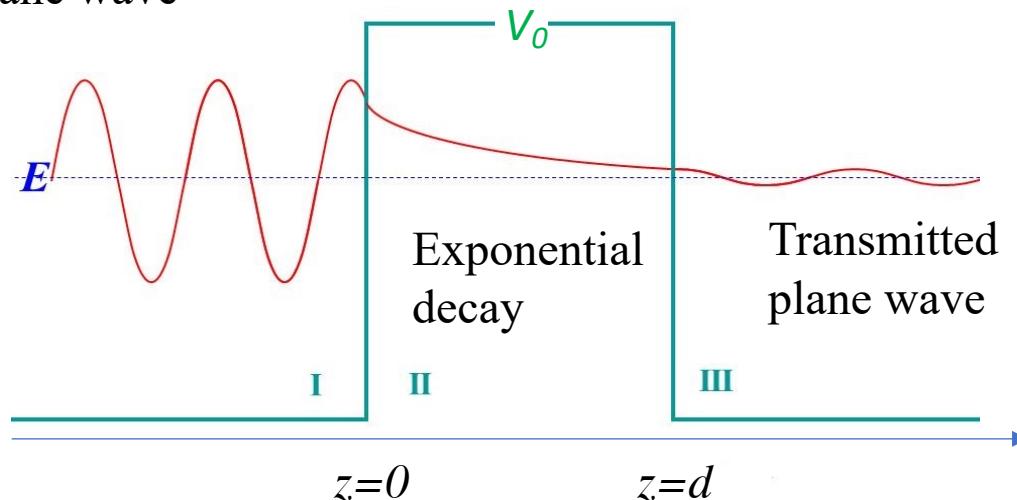


(g) Skyrmion racetrack memory

Future



Plane wave



in region II (classically forbidden), exponential decay:

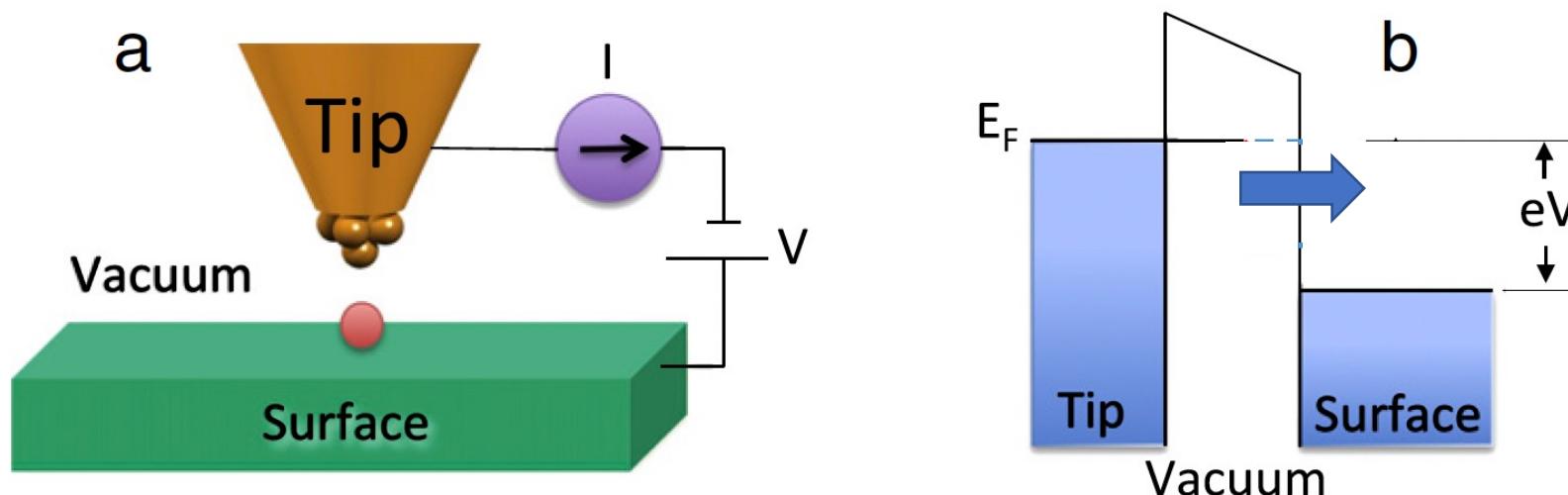
$$\psi(z) = \psi(0)e^{-\kappa z}$$

$$\text{with } \kappa = \frac{\sqrt{2m(V_0 - E)}}{\hbar}$$

in particular $\psi(d) = \psi(0)e^{-\kappa d}$

$$\rightarrow \text{tunneling probability} \propto |\psi(d)|^2 = |\psi(0)|^2 e^{-2\kappa d}$$

Scanning tunneling microscopy (STM)

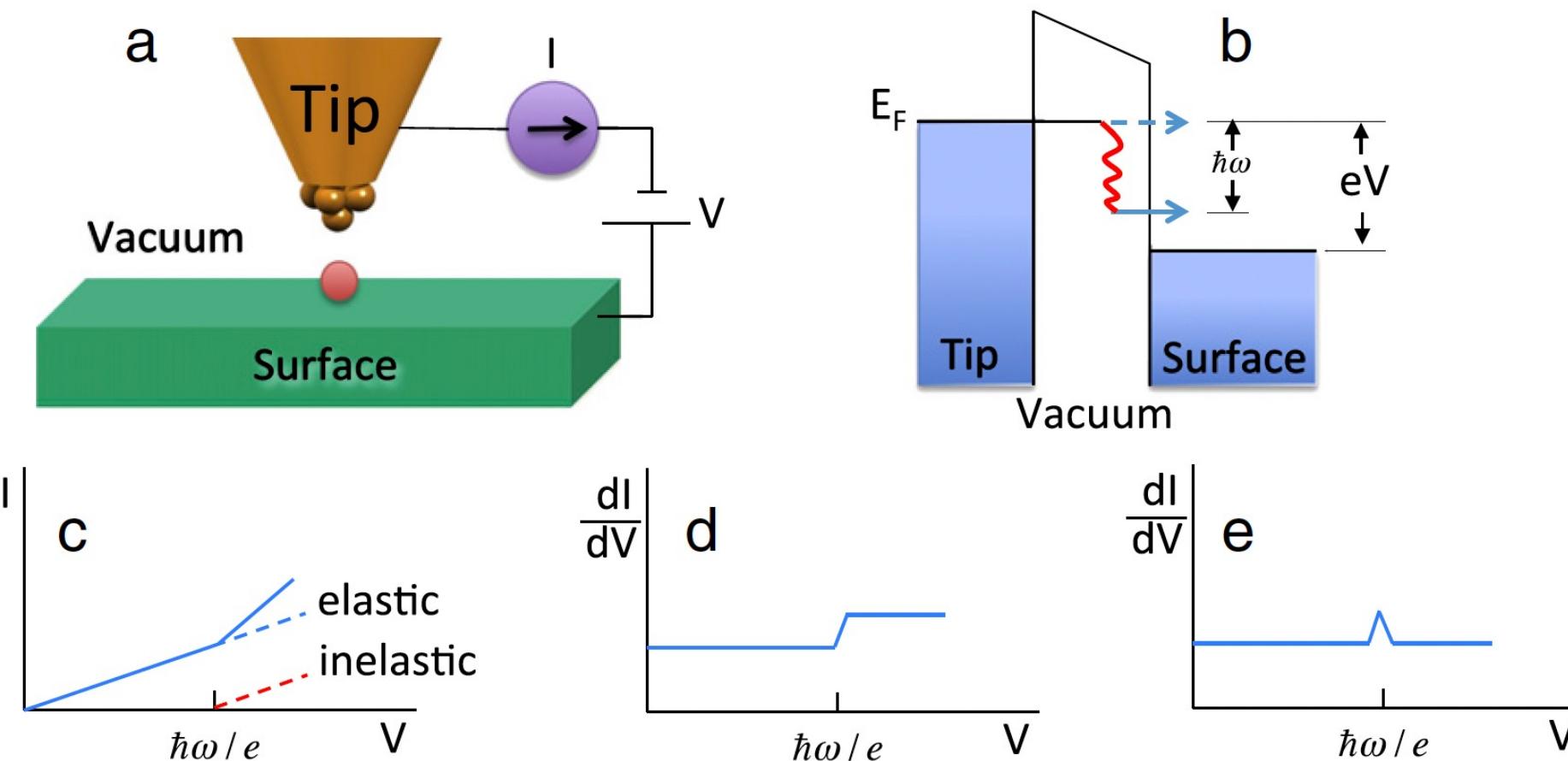


tunneling current:
($k_B T \ll eV$)

$$I \propto \int_0^{eV} \rho_t(E_F - eV + \varepsilon) \rho_s(E_F + \varepsilon) |M(\varepsilon)|^2 d\varepsilon$$

tip density of states sample density of states tunneling probability
 $\propto \exp(-2\kappa d)$

Inelastic electron tunneling spectroscopy (IETS)



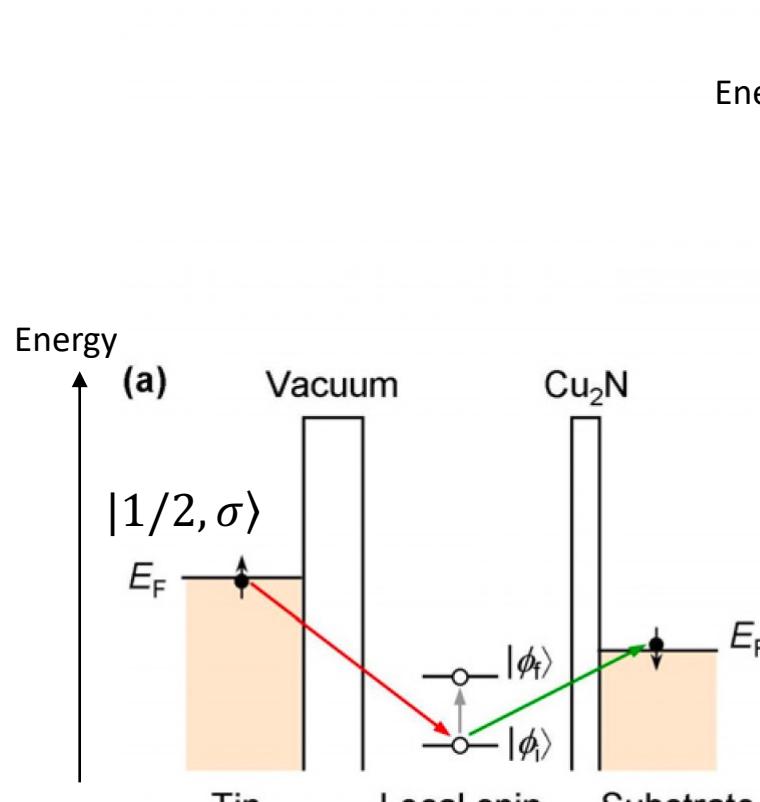
Consider an object at the surface (molecule, adatom, nanostructure...).

The tunneling electrons trigger an excitation of the adsorbate (vibration, rotation, spin flip, magnetic excitation...): they couple to the excitation mode and loose part of their energy; an additional tunneling channel is created.

This results in an increase of the tunneling current with respect to the elastic channel.

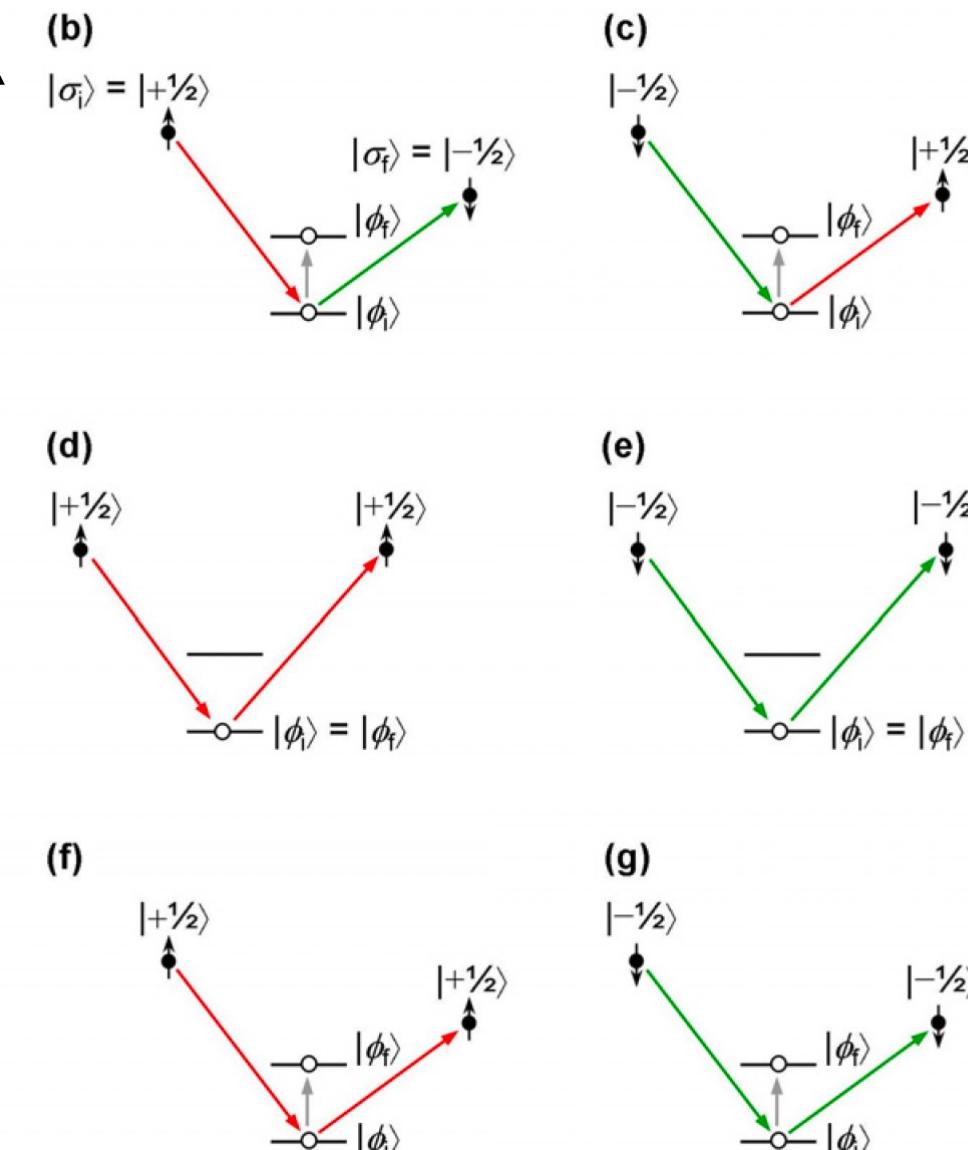
An inelastic tunneling channel opens, at a specific energy, in addition to the elastic one. The inelastic feature is present in both bias polarities.

hamiltonian for s-e scattering: $J_{exc} S_z \sigma_z + 1/2 J_{exc} (S_+ \sigma_- + S_- \sigma_+)$



$|S, m\rangle$

Loth et al., New J. Phys. 12 125021 (2010)



$$\begin{aligned}\Delta\sigma &= \mp 1 \\ \Delta m &= \pm 1 \\ \Delta E &\neq 0\end{aligned}$$

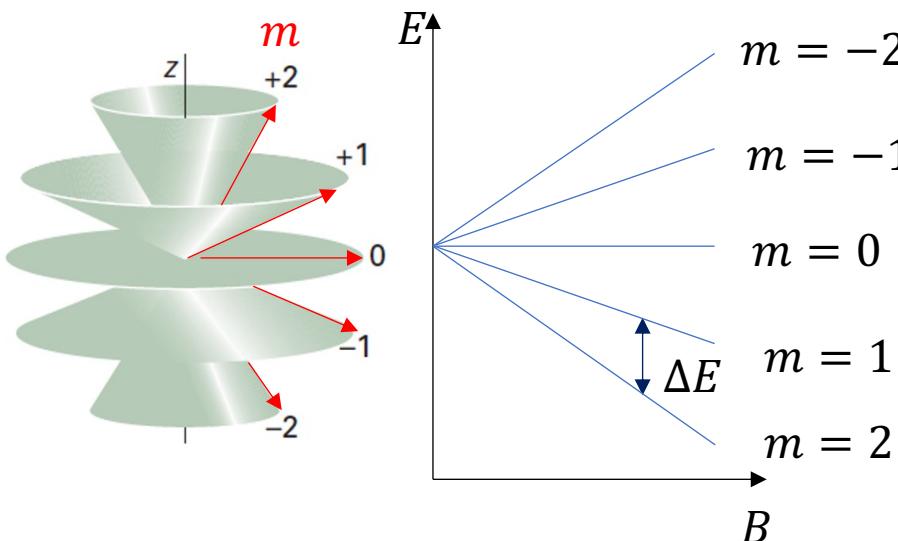
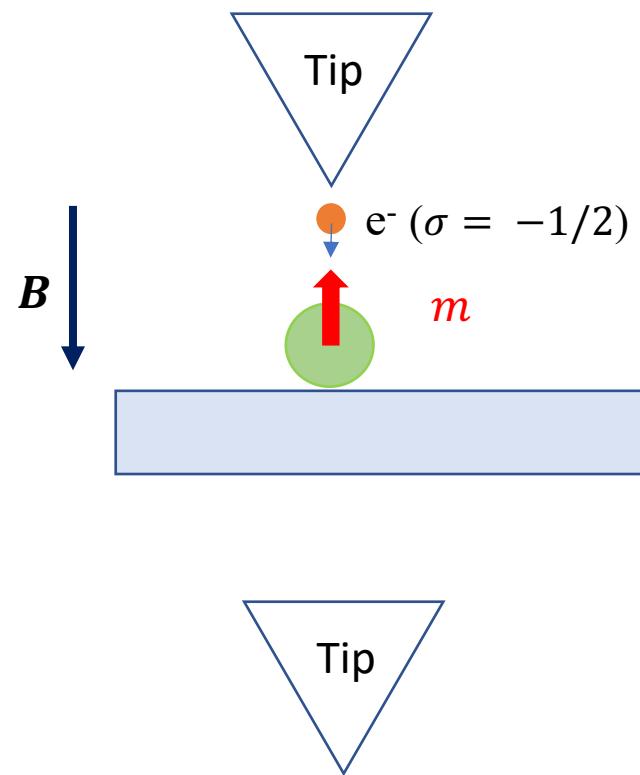
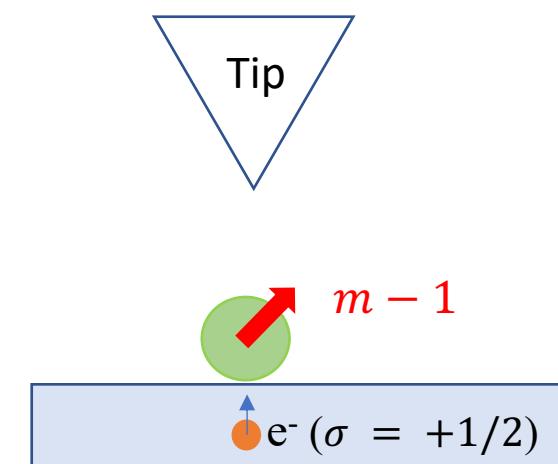
$$\begin{aligned}\Delta\sigma &= 0 \\ \Delta m &= 0 \\ \Delta E &= 0\end{aligned}$$

$$\begin{aligned}\Delta\sigma &= 0 \\ \Delta m &= 0 \\ \Delta E &\neq 0\end{aligned}$$

Zeeman energy for a paramagnetic spin $|S, m\rangle$
(magnetic moment $\mu = -g\mu_B S$)

example:

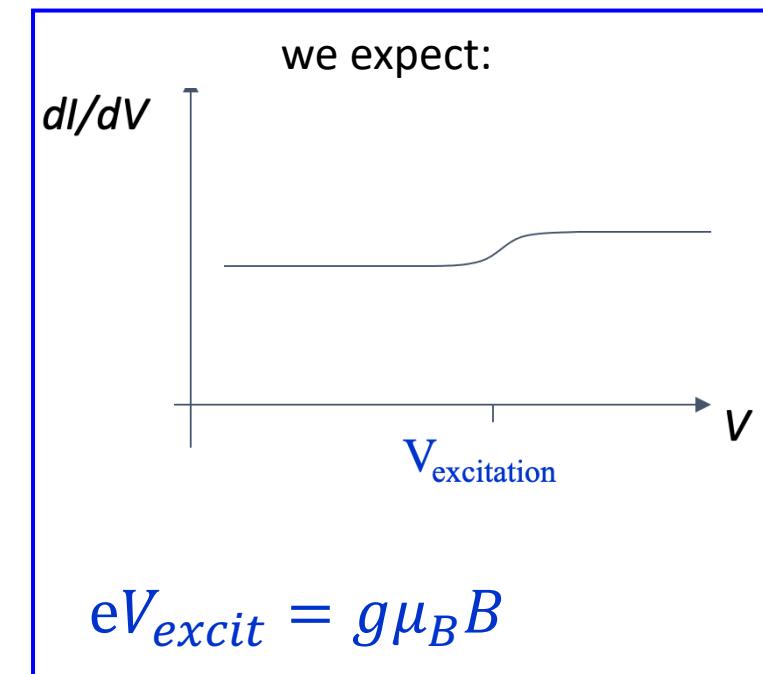
$$S = 2; \quad m = -2, \dots, 2$$



$$H_{Zee} = g\mu_B \mathbf{S} \cdot \mathbf{B}$$

$$E(m) = g \mu_B m B$$

$$\Delta E = |g\mu_B B \Delta m|$$



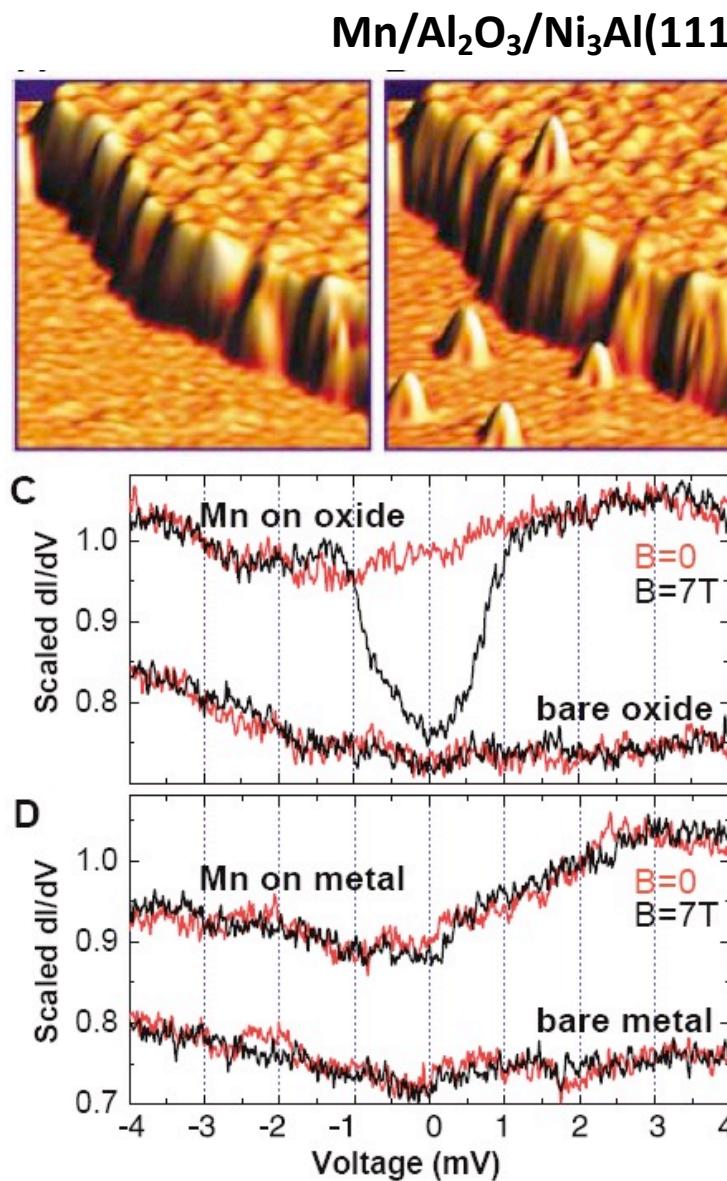
$$eV_{excit} = g\mu_B B$$

$$\Delta\sigma = +1 \rightarrow \Delta m = -1$$

$$\Delta E = |g\mu_B B|$$

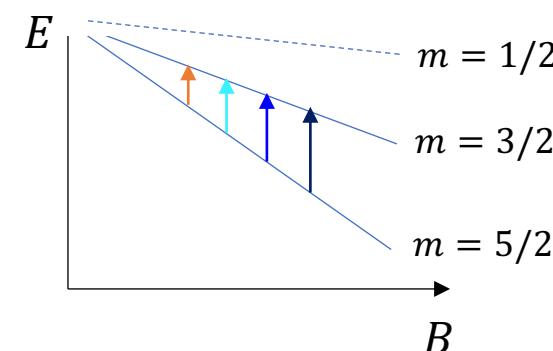
An inelastic tunneling process can involve energy and momentum transfer from the tunneling electron to the atom spin which flips from the ground to an excited state.

Example: Mn/Al₂O₃



free Mn atom: [Ar]3d⁵ 4s²

$$S = \frac{5}{2}, L = 0$$

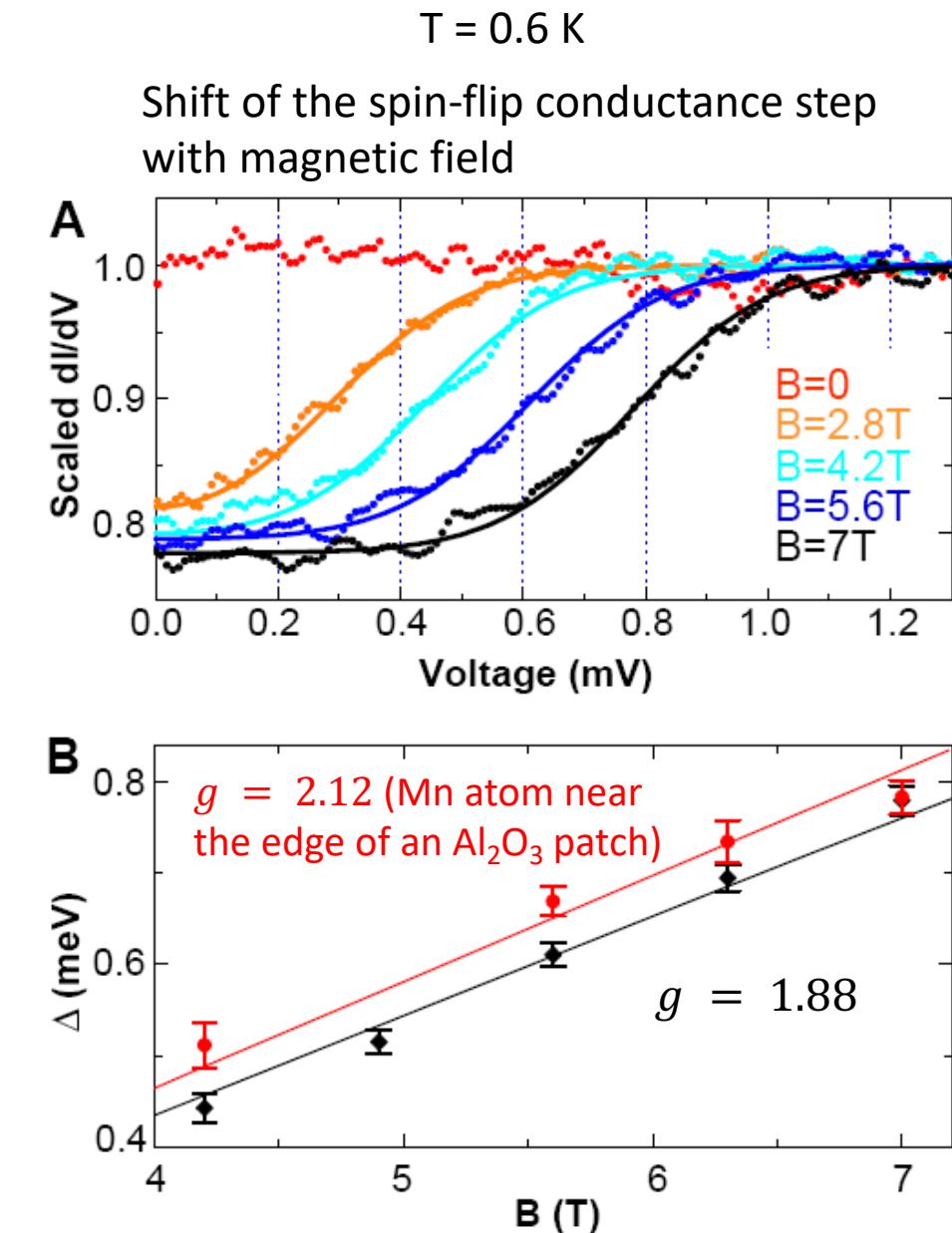


$$eV_{excit} = g\mu_B B$$

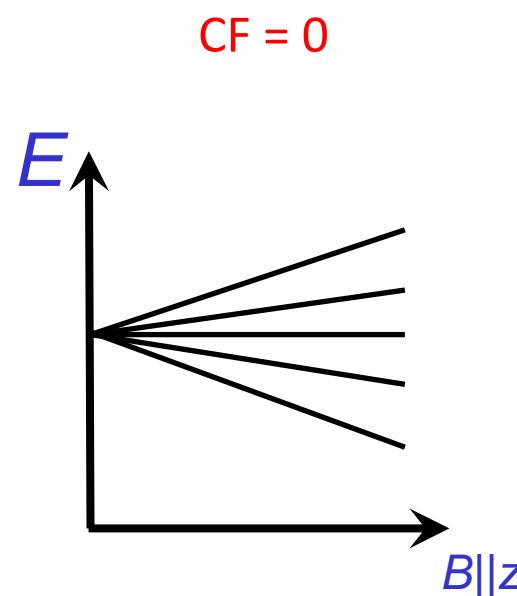
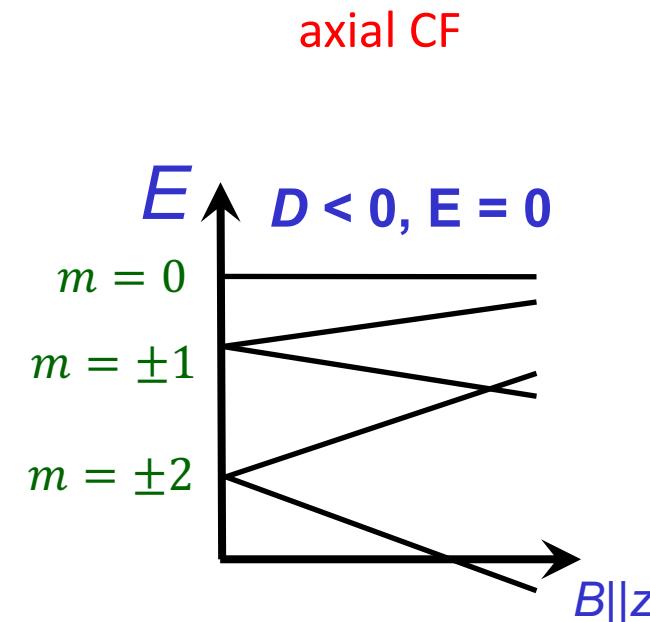
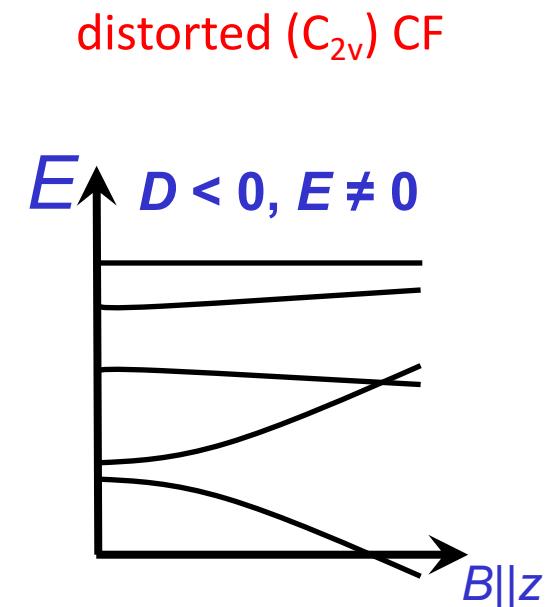
$$g = \frac{3}{2} + \frac{S(S+1) - L(L+1)}{2J(J+1)}$$

g is the Landé g-factor.

For $L = 0 \rightarrow g = 2$

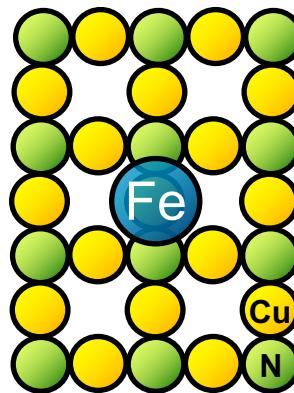


Energy spectrum: example for $S = 2$



$$H_{eff} = g_z \mu_B (H_z S_z) + D S_z^2 + E (S_x^2 - S_y^2)$$

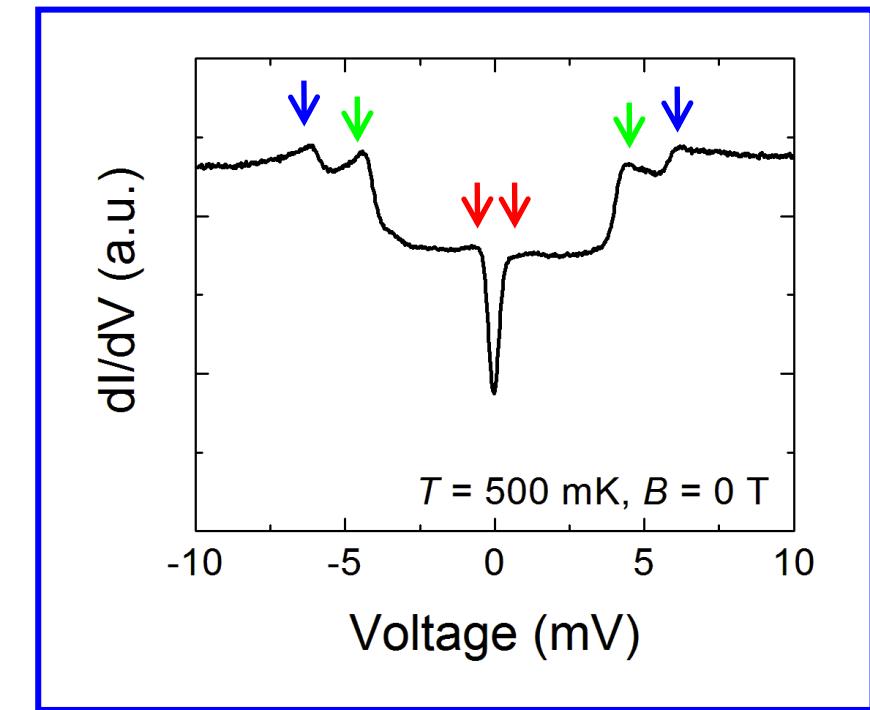
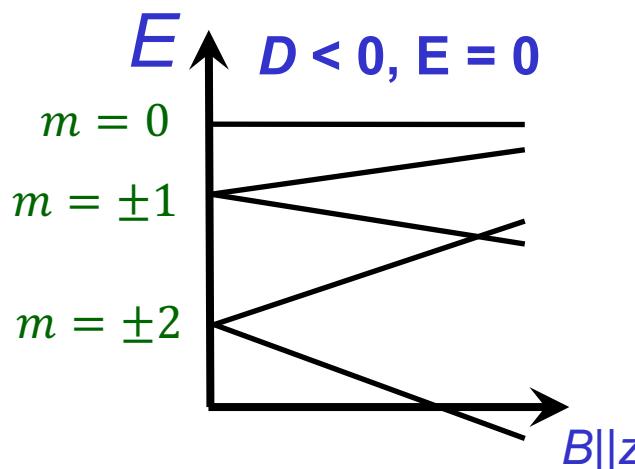
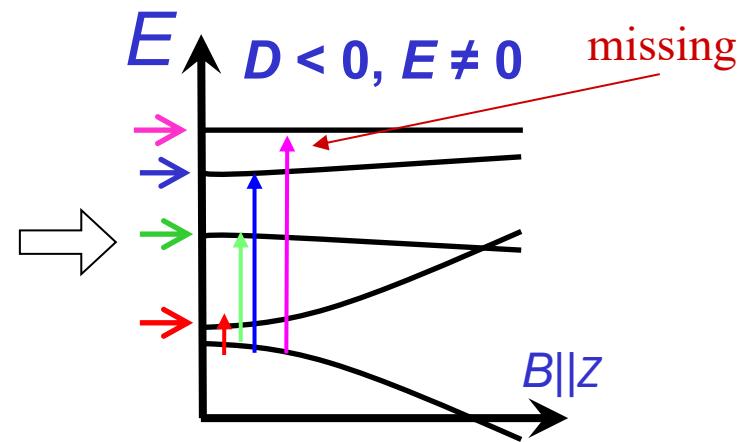
Example: Fe/Cu₂N/Cu(001)



free Fe atom: [Ar] 3d⁶ 4s²
 $S = 2, L = 2$

$$H_{eff} = g\mu_B S_z B + D S_z^2 + E(S_x^2 - S_y^2)$$

z is in the plane, along the N-row (magnetization easy axis)



Eigenstates $|\Psi_i\rangle$ and eigenvalues E_i of H for a given field B

Eigenstate		$ +2\rangle$	$ +1\rangle$	$ +0\rangle$	$ -1\rangle$	$ -2\rangle$	Eigenvalues
$B = 0 \text{ T}$							
Ψ_0	σ_z	0.697	0	-0.166	0	0.697	0 meV
Ψ_1		0.707	0	0	0	-0.707	0.18 meV
Ψ_2	σ_-, σ_+	0	0.707	0	-0.707	0	3.90 meV
Ψ_3		0	0.707	0	0.707	0	5.76 meV
Ψ_4		0.117	0	0.986	0	0.117	6.56 meV
$B = 7 \text{ T}$							
Ψ_0		0.021	0	-0.097	0	0.995	
Ψ_1		0.987	0	-0.157	0	-0.036	
Ψ_2		0	0.402	0	-0.916	0	
Ψ_3		0	0.916	0	0.402	0	
Ψ_4		0.159	0	0.983	0	0.092	

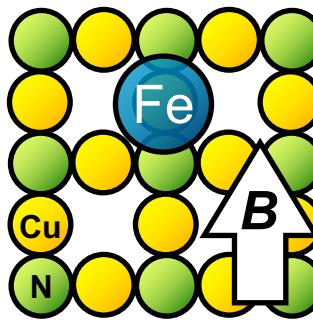
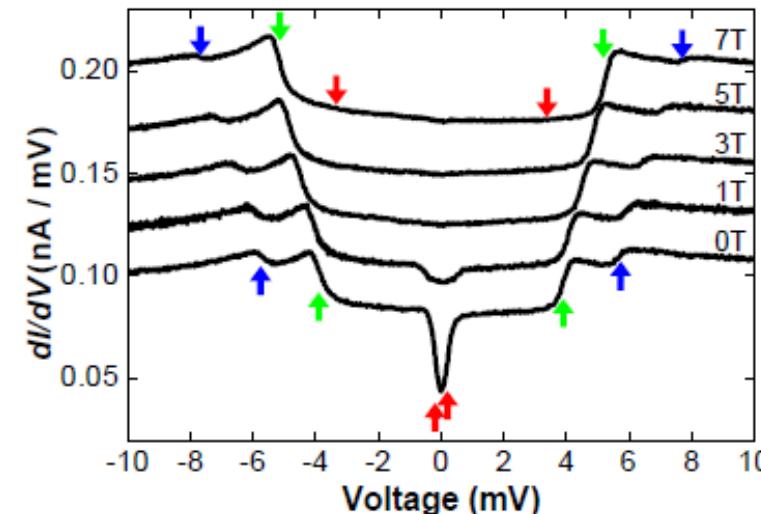
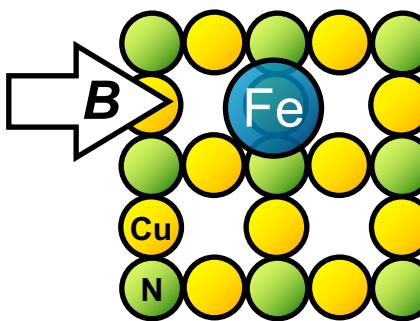
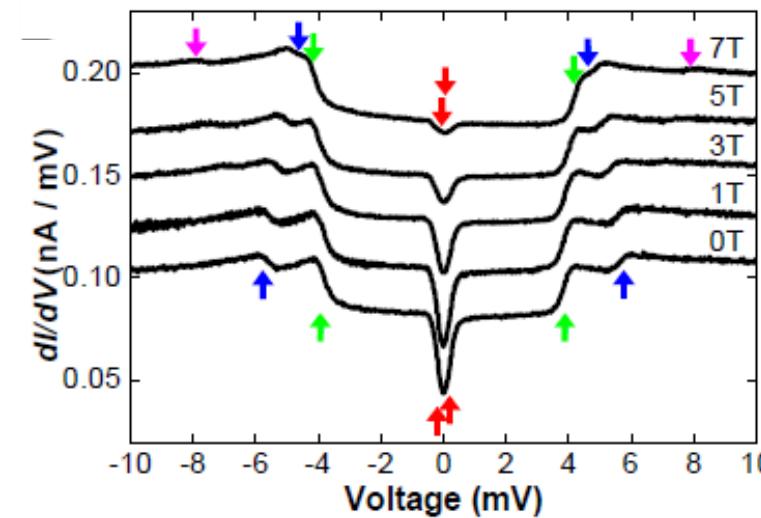
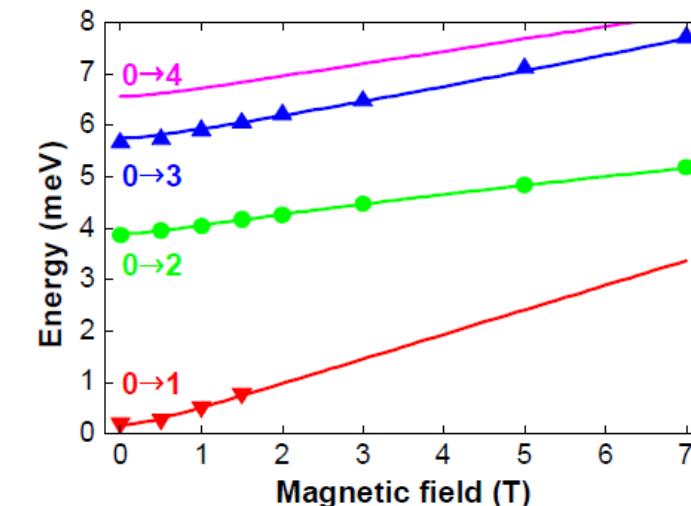
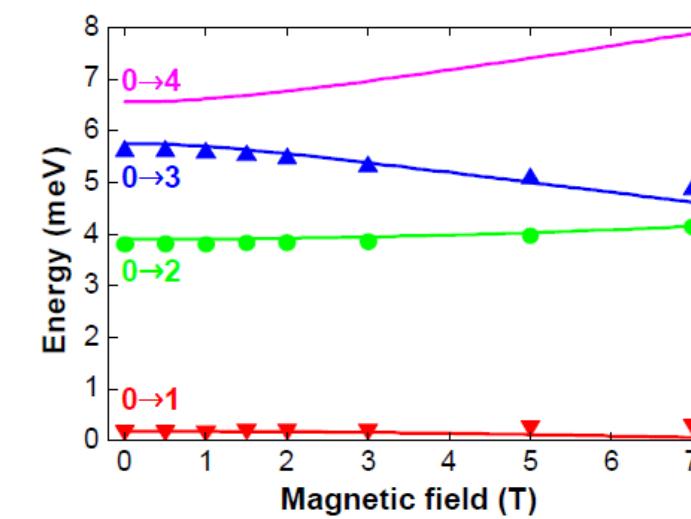
$$S = 2, g = 2.11, D = -1.55 \text{ meV}, E = 0.31 \text{ meV}$$

S integer, $E \neq 0 \rightarrow$ quantum tunneling: at $B = 0$ the ground state Ψ_0 (and Ψ_1) is a superposition of $|+2\rangle$ and $| -2\rangle \rightarrow \langle S_z \rangle = 0$

B splits the states (i.e. the states are almost pure) and restore a moment: at $B = 7 \text{ T} \rightarrow \langle S_z \rangle = \pm 2$

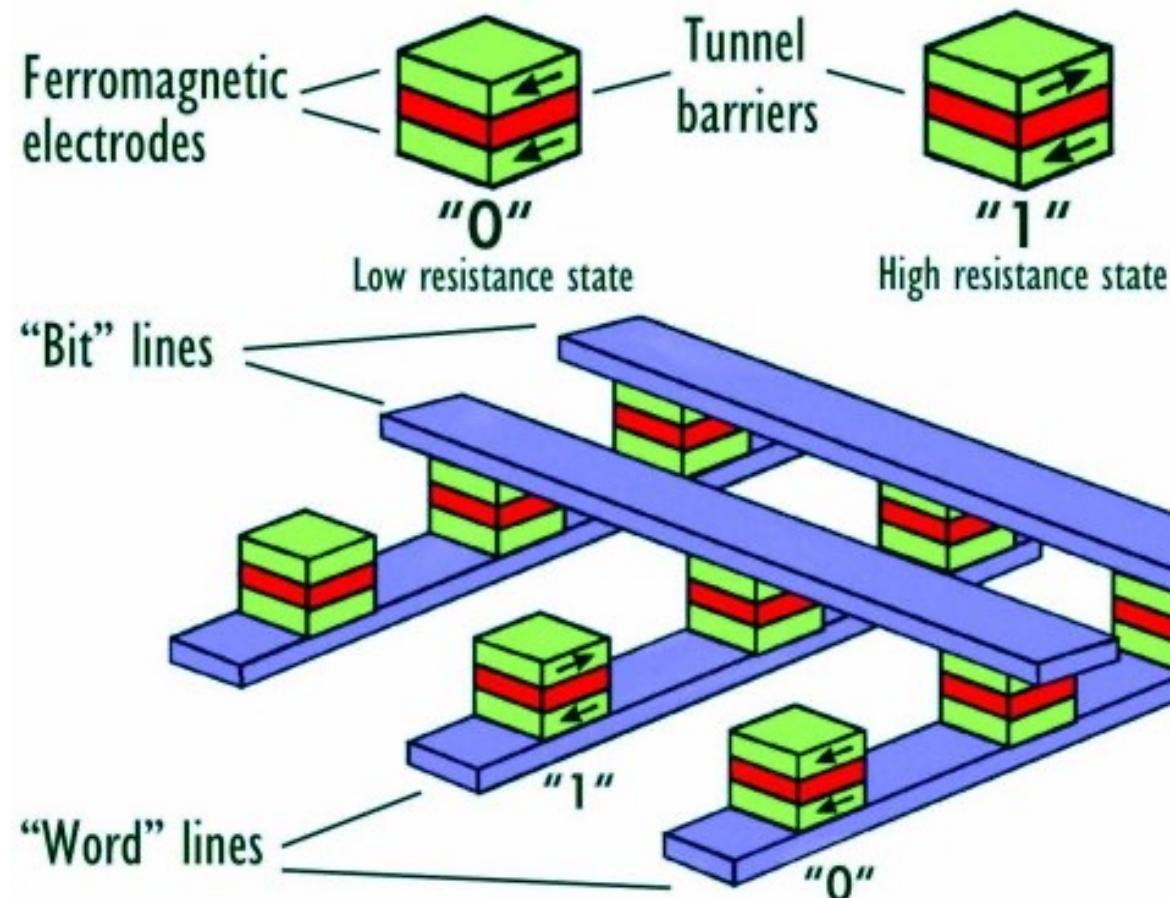
$T_1 \sim h/(\Delta E) = 200 \text{ ns} (B = 0 \text{ T}) \rightarrow$ very short spin lifetime

Spectra depend on B field direction \rightarrow magnetic anisotropy



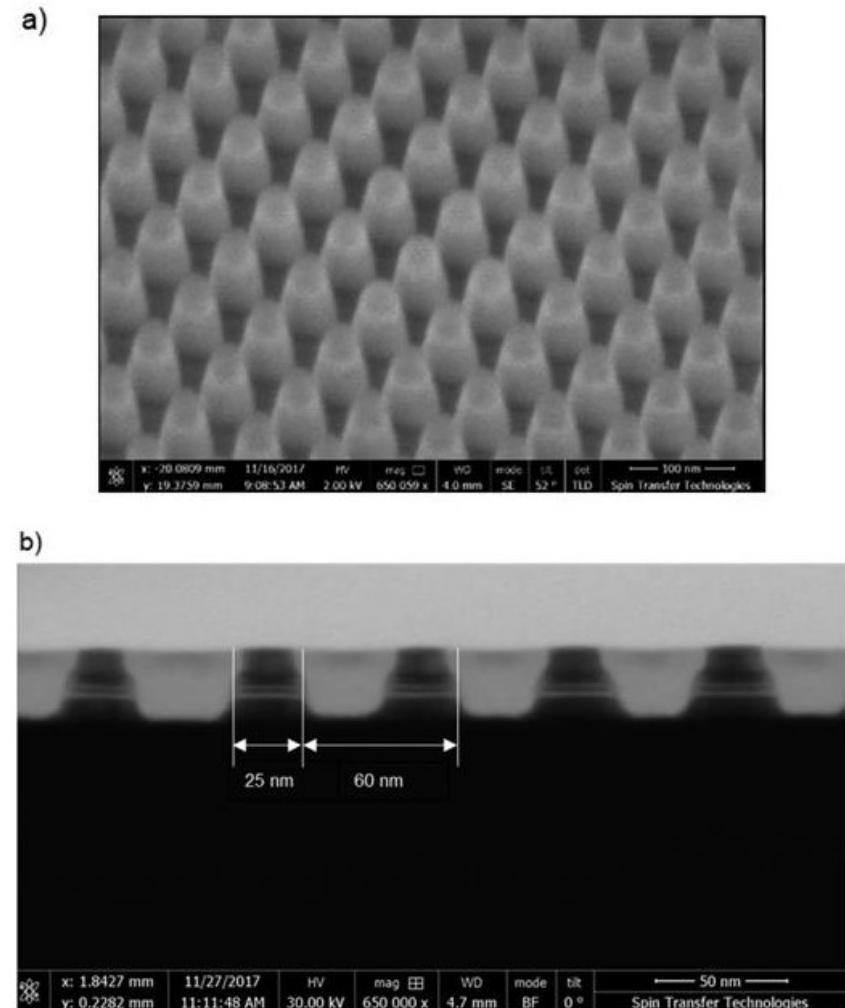
MRAM: downscaling to single atom?

EPFL



Reading: by measuring the point contact resistance between a bit and a word line

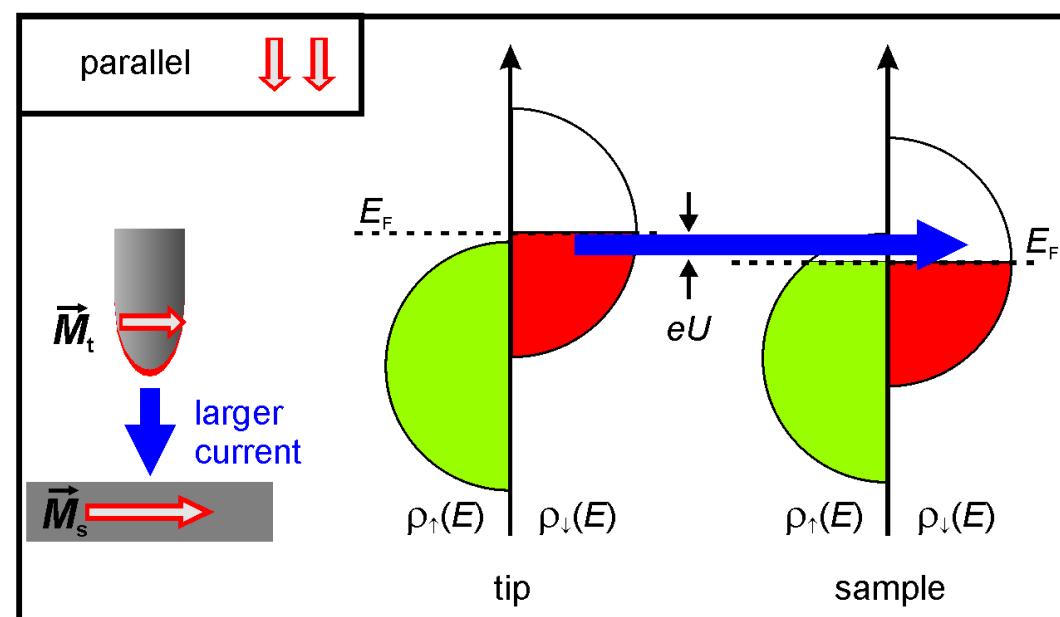
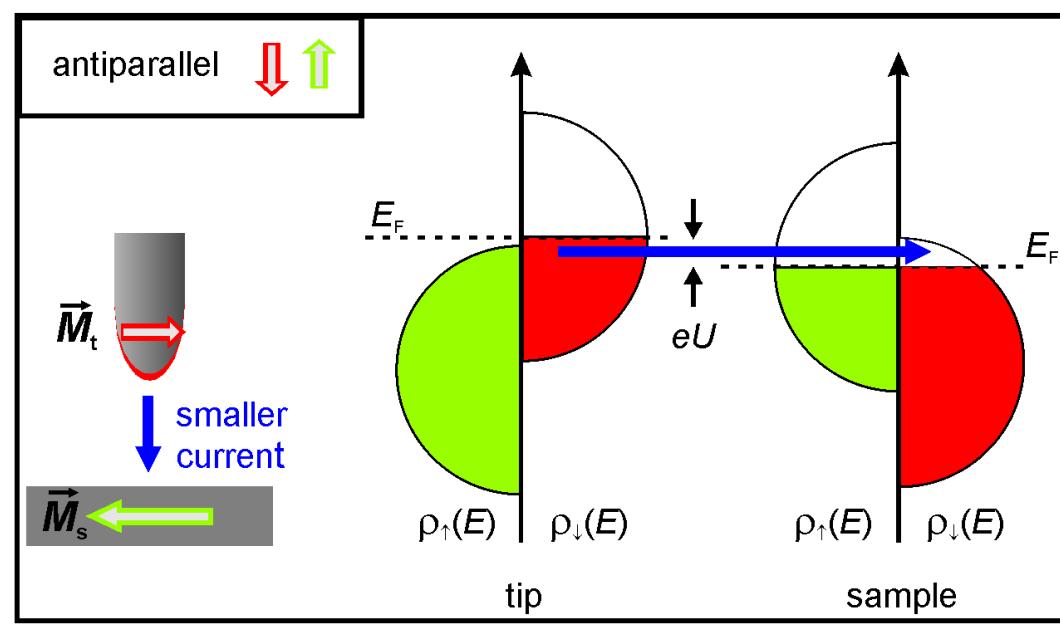
Writing: by **magnetic fields (toggle-MRAM)** or by **injecting spin polarized current i.e. spin transfer torque (STT-MRAM)** through the point contact



[VIEW LARGE](#)

[DOWNLOAD SLIDE](#)

(a) SEM picture shows the wafer surface for high density processing at an intermediate processing step. The pillar structures are shown after photoresist and reactive ion etching of the hard mask layer. The hard mask layer protects the pMTJ structure during the ion beam etching. (b) The cross section of the high density pillars after they are formed. The pillar diameters are ~25 nm with ~60 nm pitch, demonstrating capabilities to make high density chips.



The tunneling current is the sum of two contributions

$$I \propto I^{\uparrow} + I^{\downarrow}$$

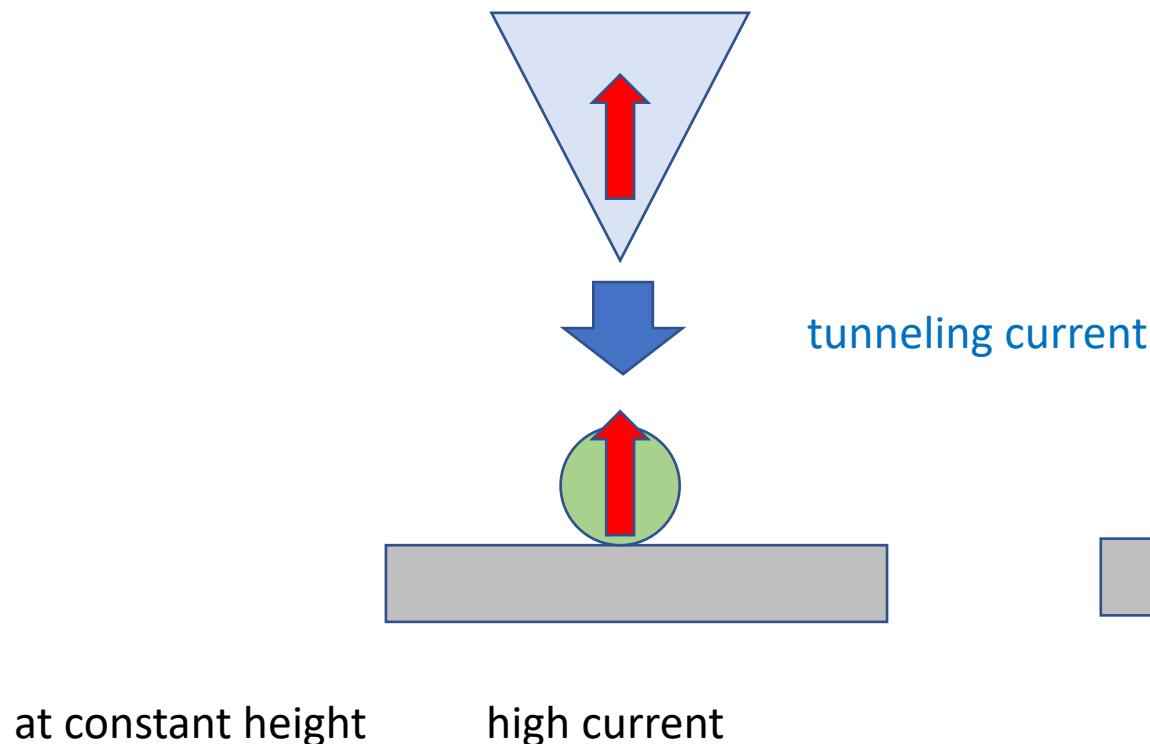
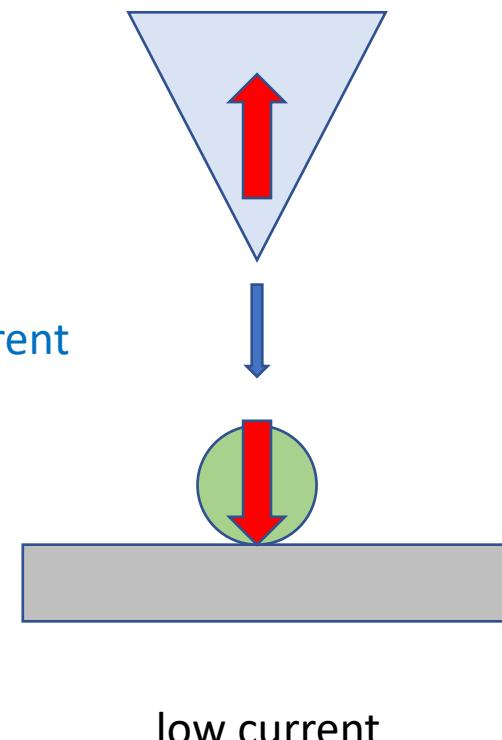
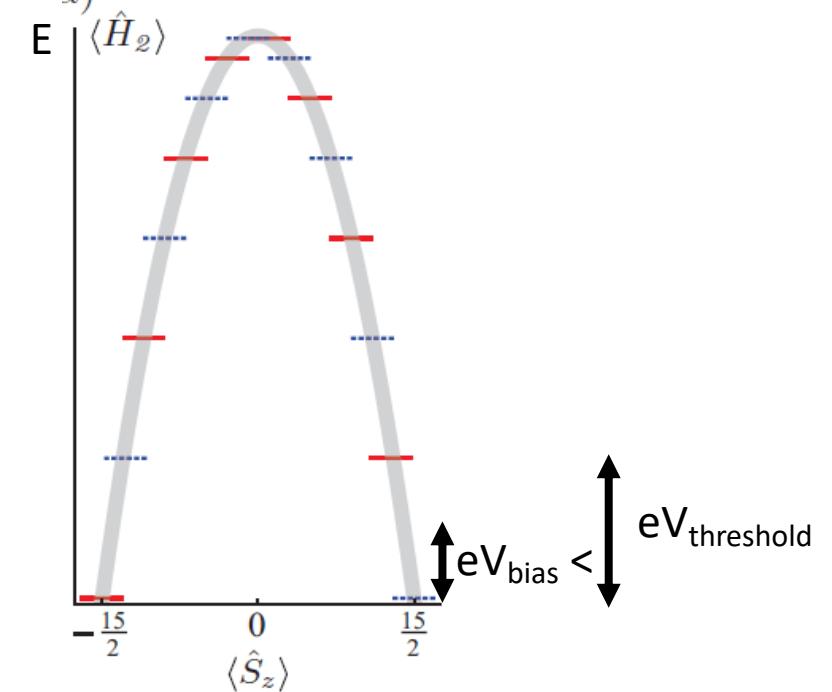
At fixed bias and tip-sample distance, the tunneling current changes depending on the alignment of tip and sample magnetization

Junction spin polarization:
(magnetoresistance)

$$P = \frac{I^{high} - I^{low}}{I^{high} + I^{low}}$$

$$P \sim P_{tip} P_{sample} \cos \theta$$

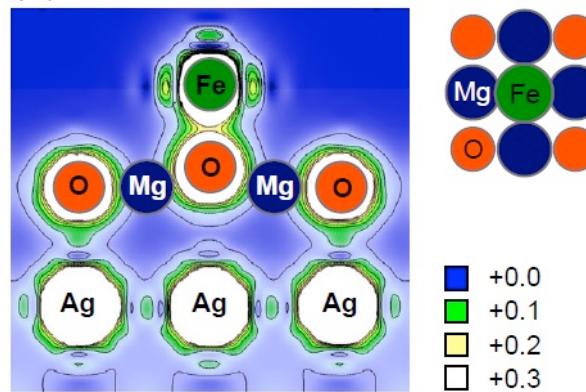
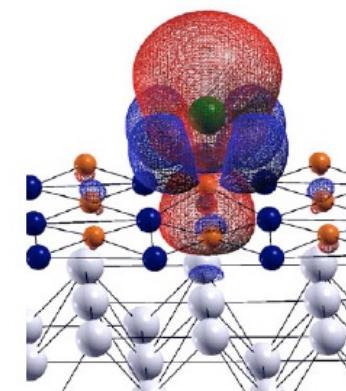
determination of the orientation (θ) of the sample magnetization with respect to the one of the tip



measurement vs. time:

- a change in the orientation of the atom magnetization is detected as a change in current (telegraph signal, magnetic contrast)
- determination of the spin lifetime

Example C_{4v}: Fe/MgO/Ag(100)



free Fe atom: [Ar]3d⁶ 4s²

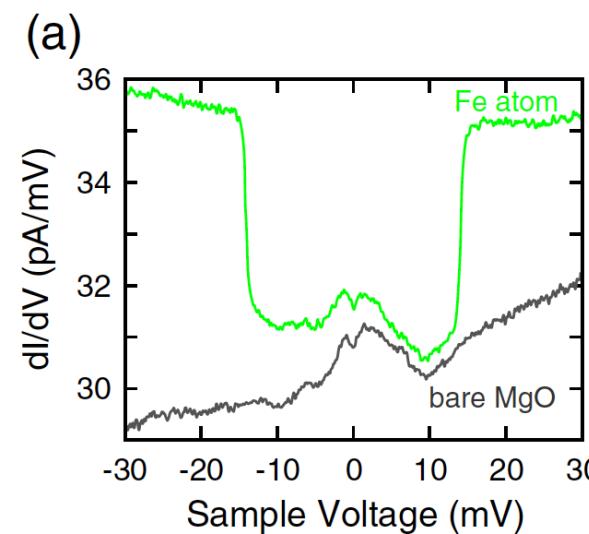
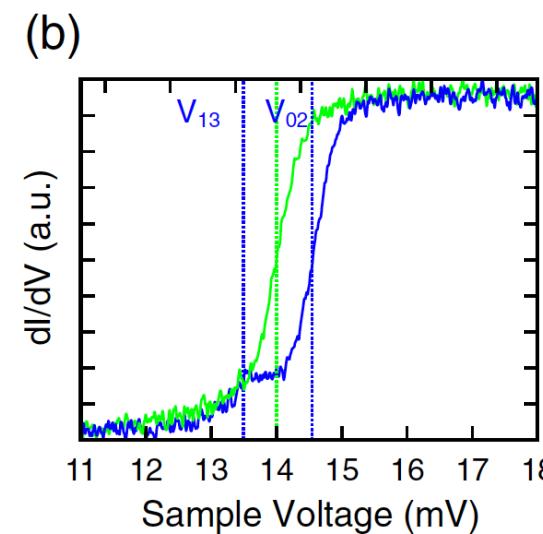
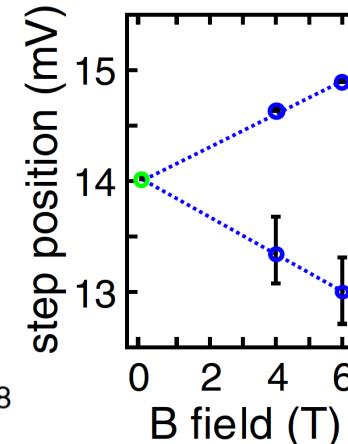
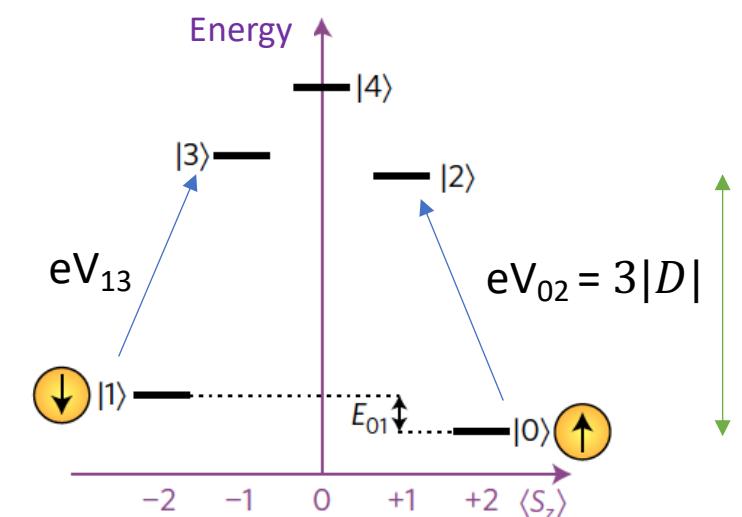
$$S = 2, L = 2$$

$$H_{eff} = g\mu_B S_z B + D S_z^2 + C(S_-^4 + S_+^4)$$

z is perpendicular to the surface

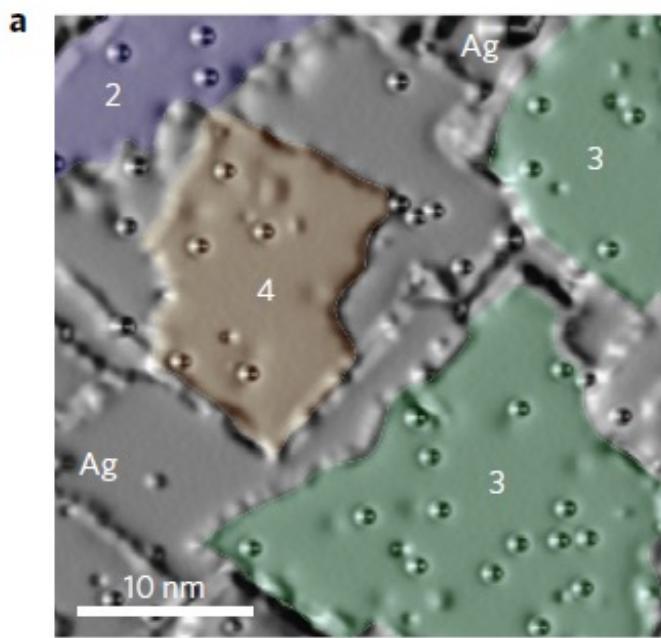
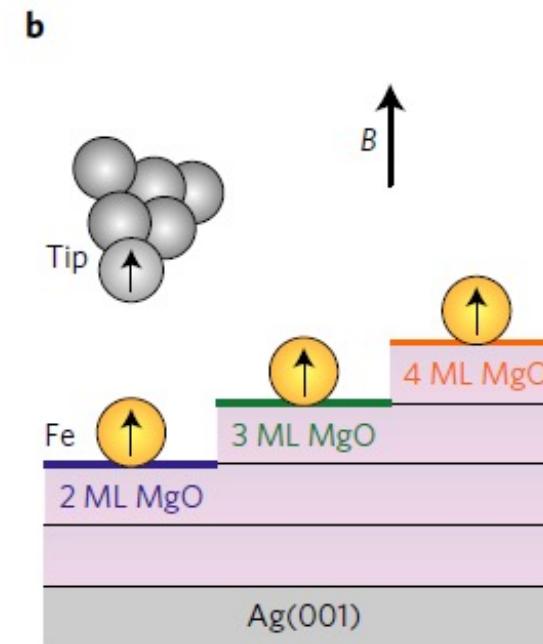
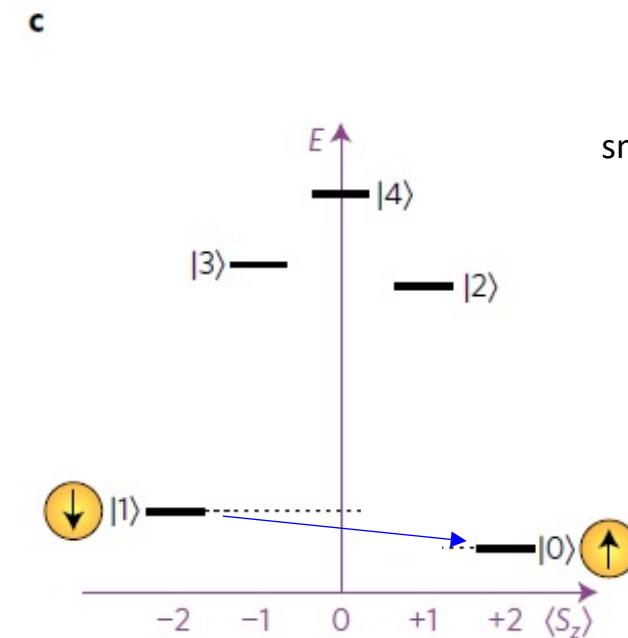
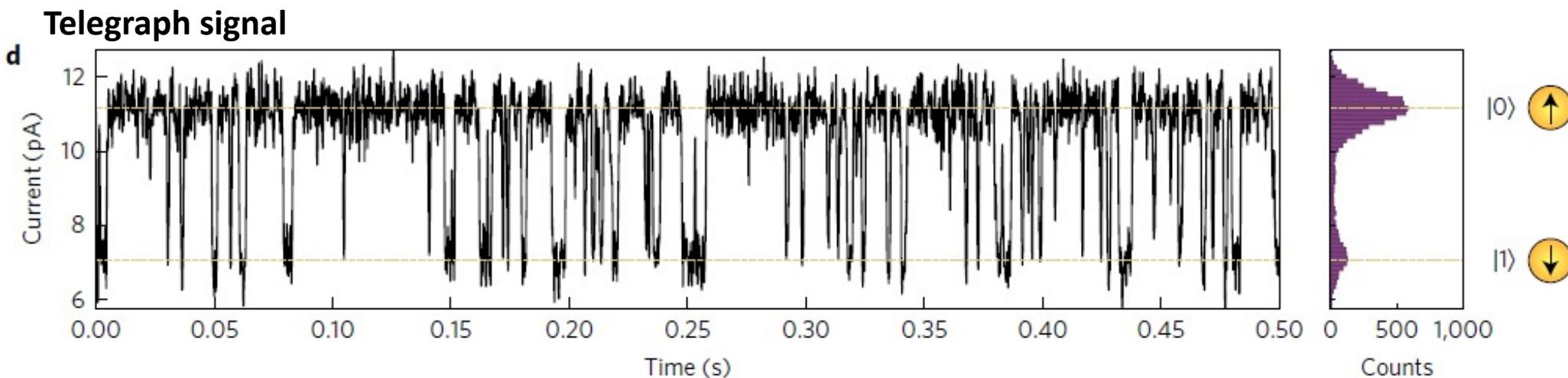
$$D = -4.7 \text{ meV}, \quad C = 41 \text{ neV}, \quad g = 2.6$$

ground and first excited state $|0\rangle, |1\rangle$: $\langle S_z \rangle \approx \pm 2$



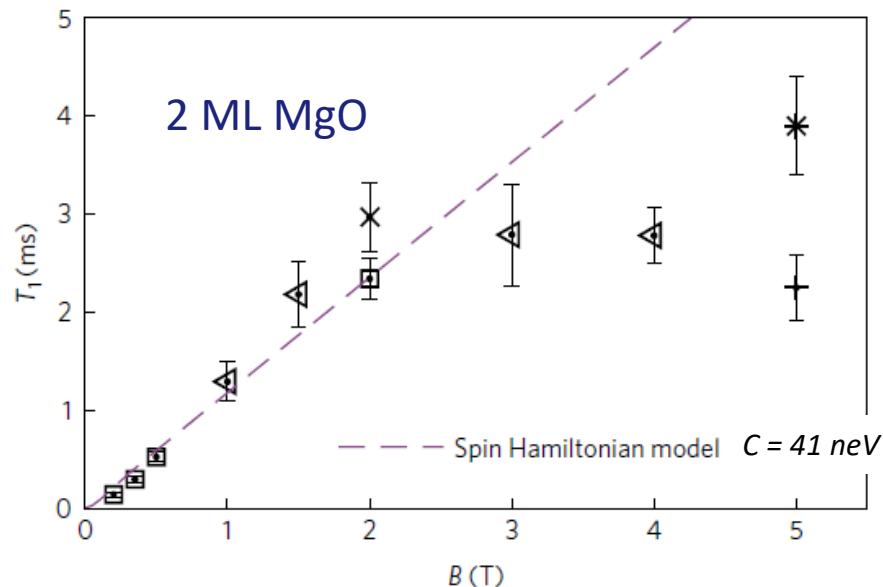
The zero-field splitting between state 0 and state 1 due to the transverse term C is too small to be detected at $T = 0.6 \text{ K}$

Fe/MgO/Ag(100): telegraph signal



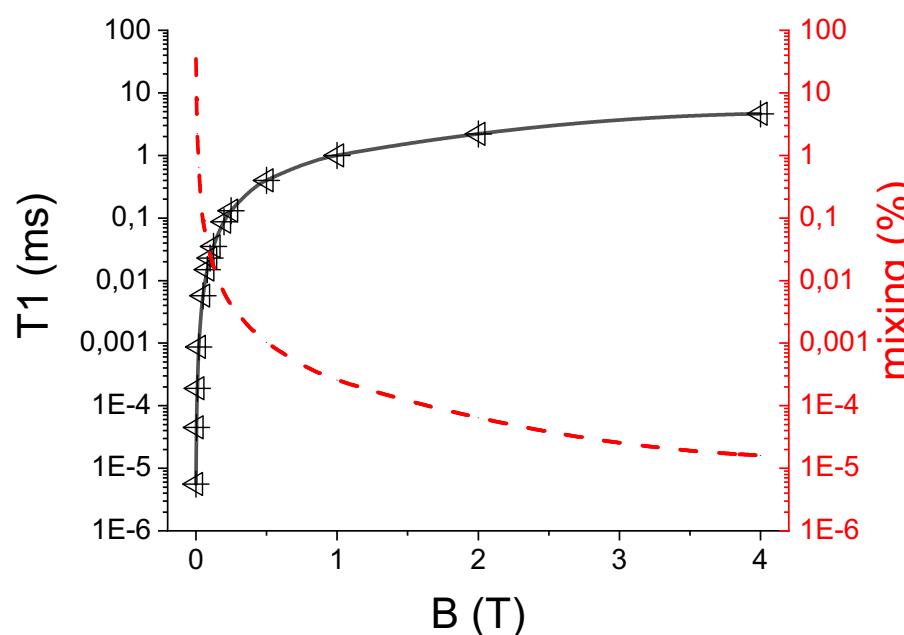
$$\text{lifetime } T_1 = (\text{switching rate})^{-1}$$

Fe/MgO/Ag(100): spin lifetime

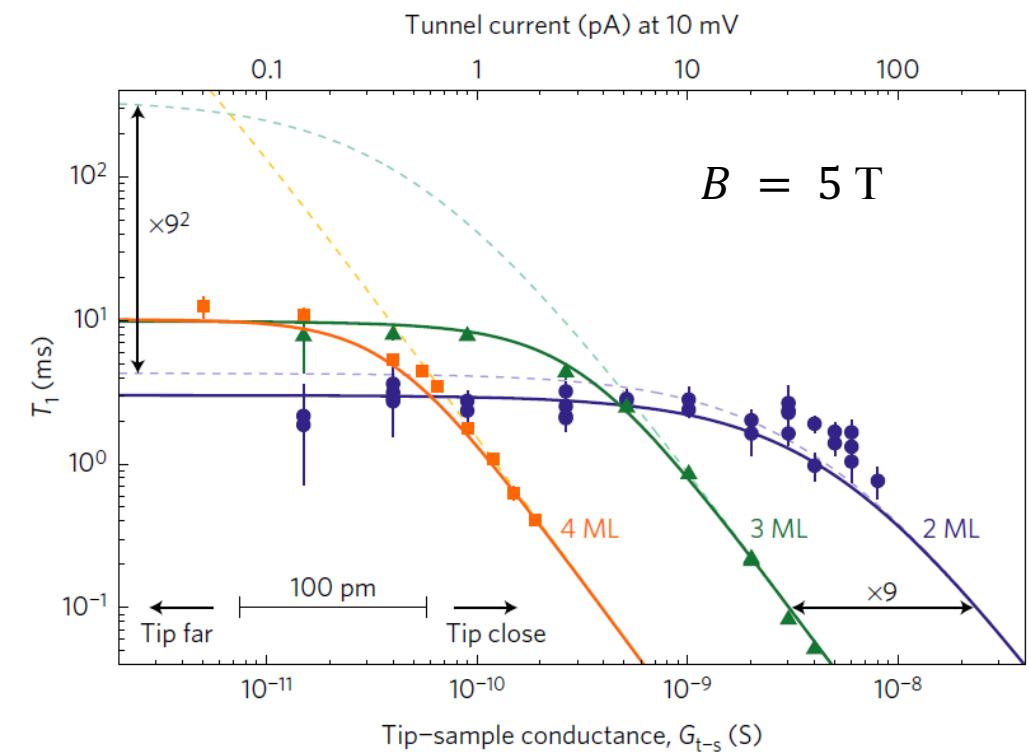


Due to the C_{4v} CF, $|0\rangle$ and $|1\rangle$ are not pure states \rightarrow
QTM $\rightarrow T_1 = 0$ at $B = 0 \text{ T}$

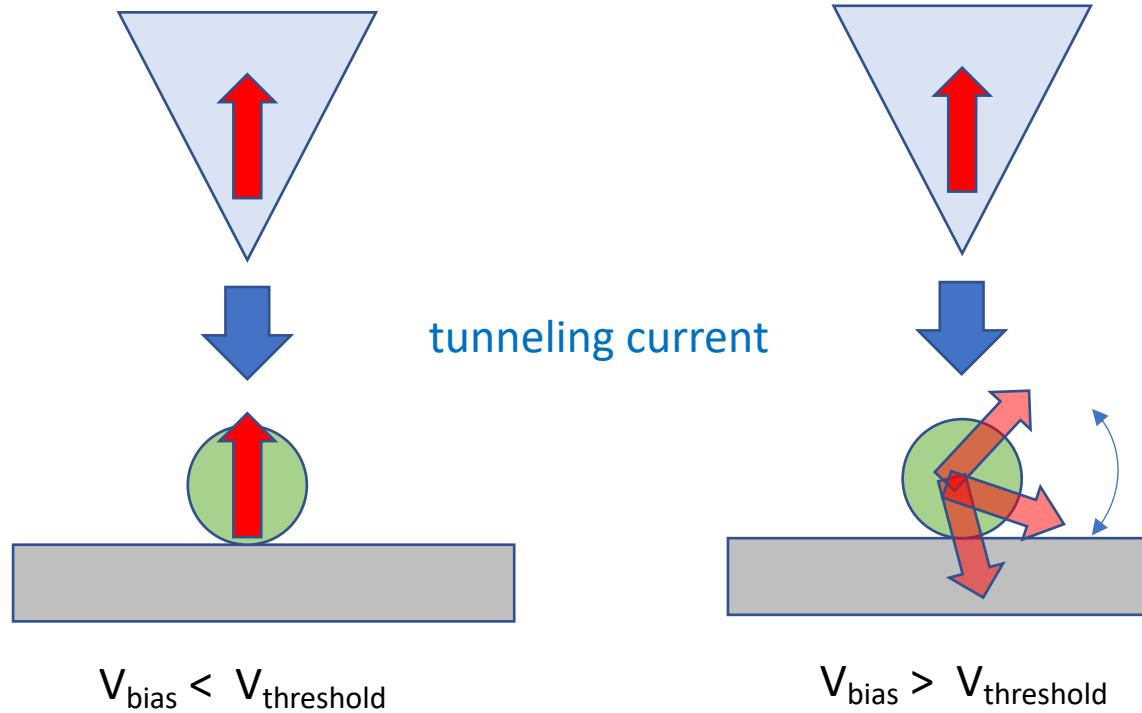
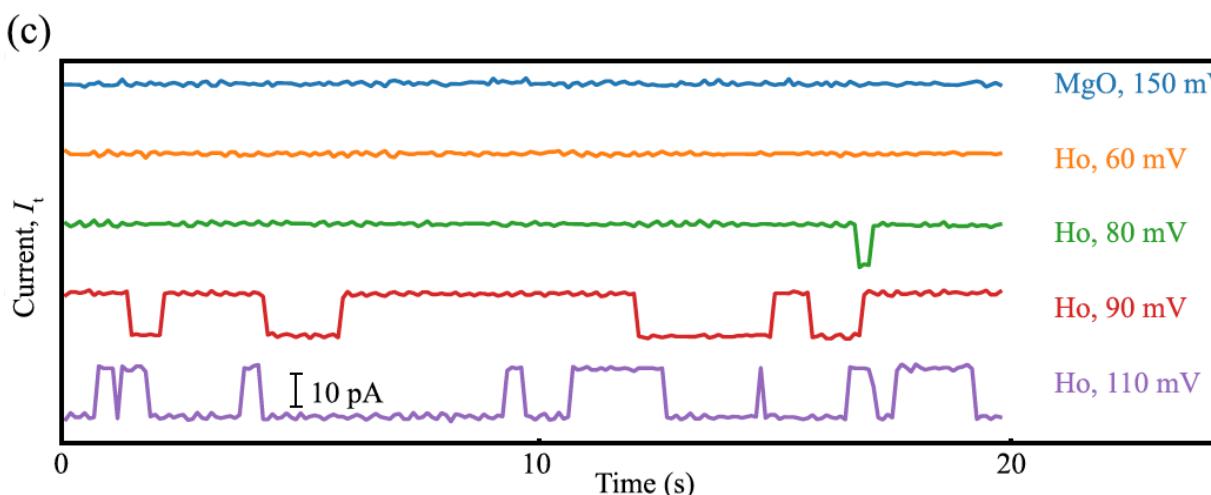
The external field B restores the pure spin states \rightarrow no QTM
 \rightarrow longer T_1



Increasing the MgO thickness, T_1 increases due to
reduced scattering with the electrons of the
supporting Ag(100) crystal

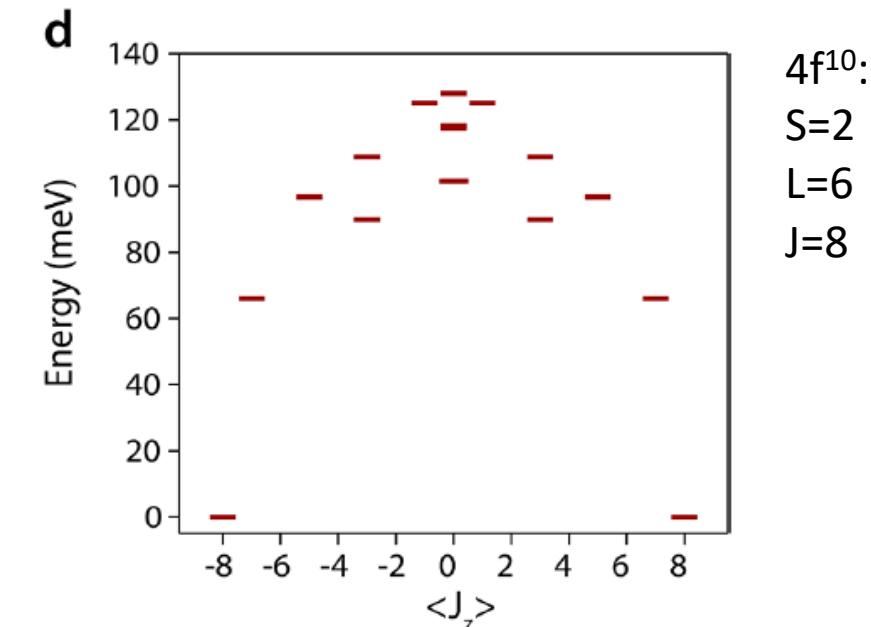
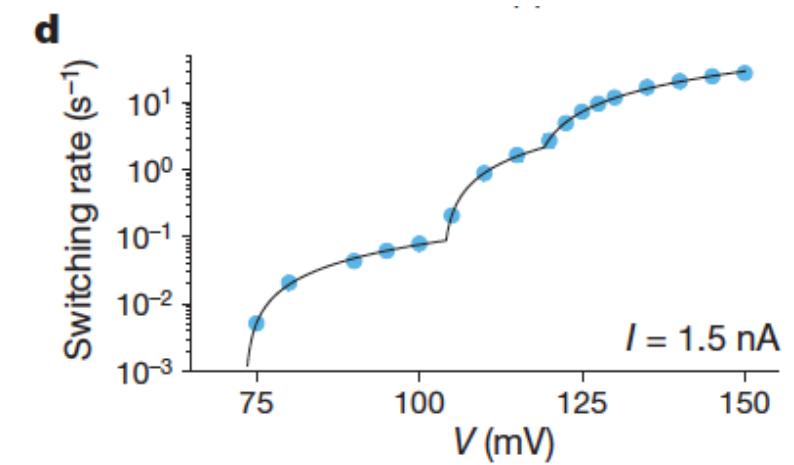


STT at the single atom scale: writing the spin state

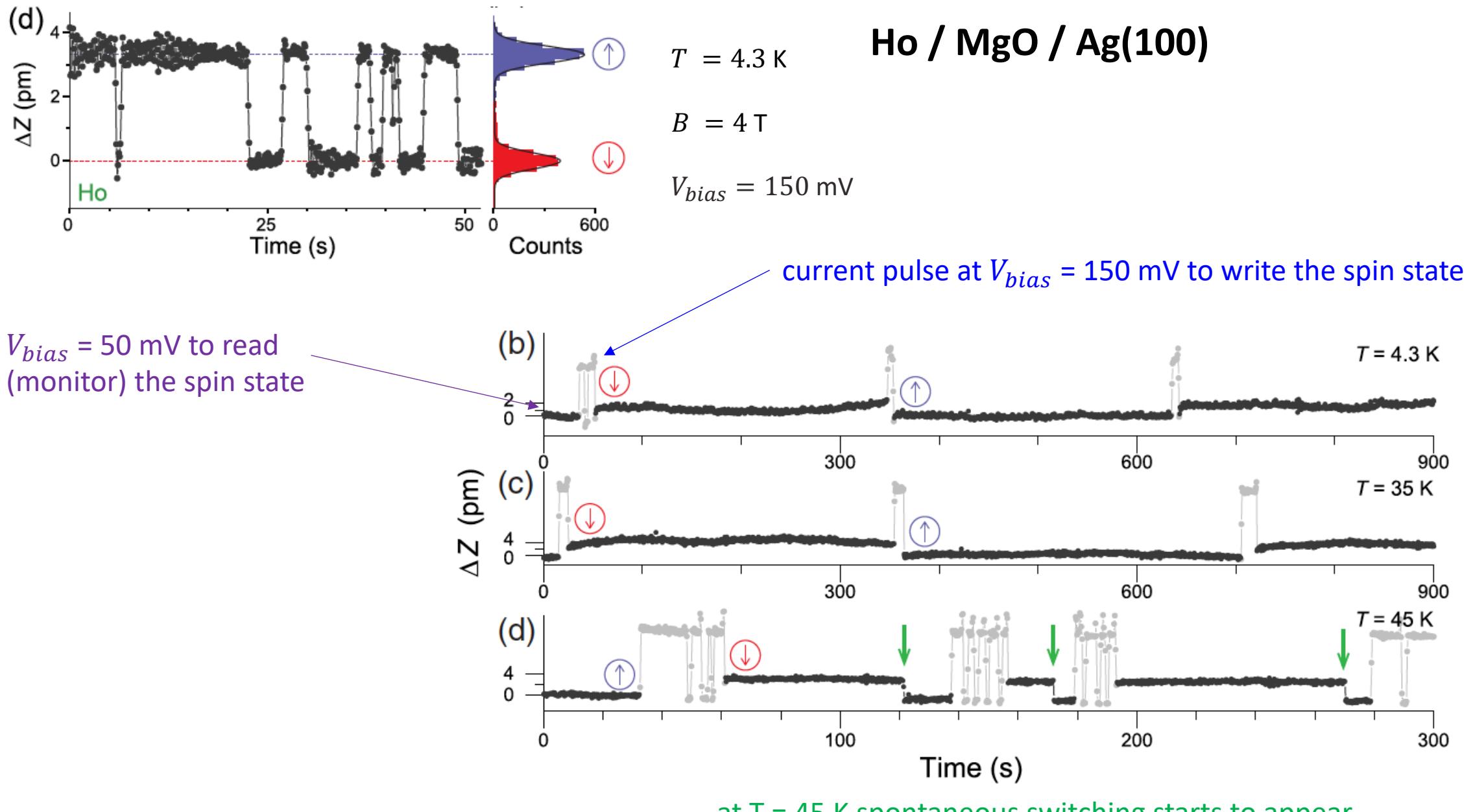


Ho / MgO / Ag(100)

See exercise: 9.1

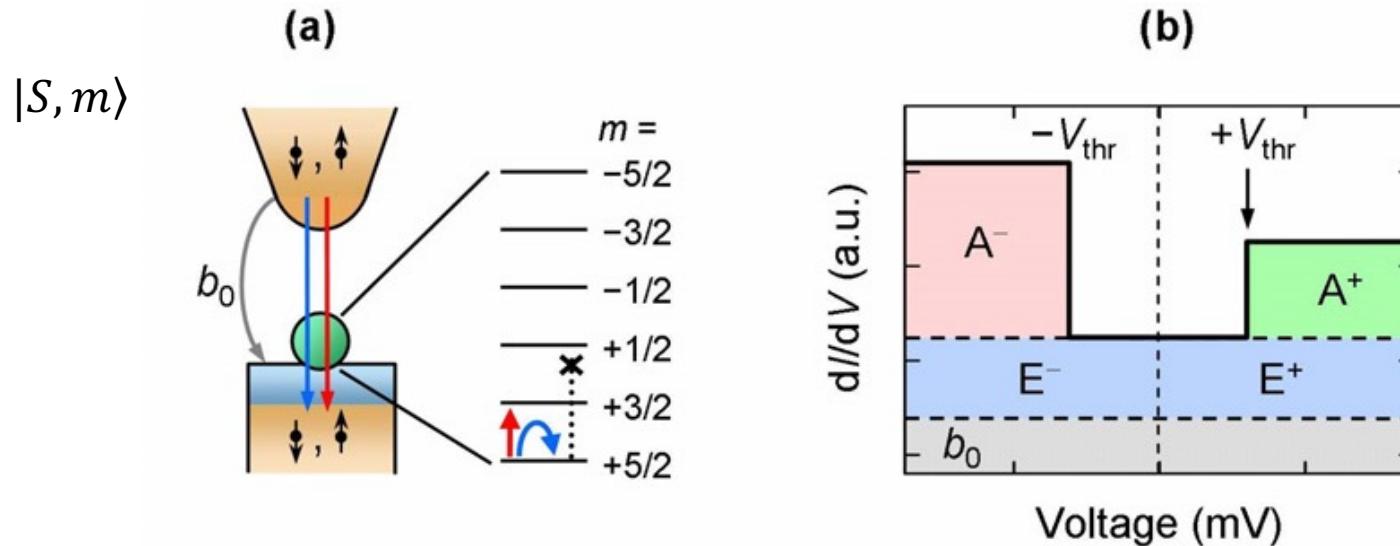


STT at the single atom scale: writing the spin state



Spin-dependent IETS – Spin transfer torque

EPFL



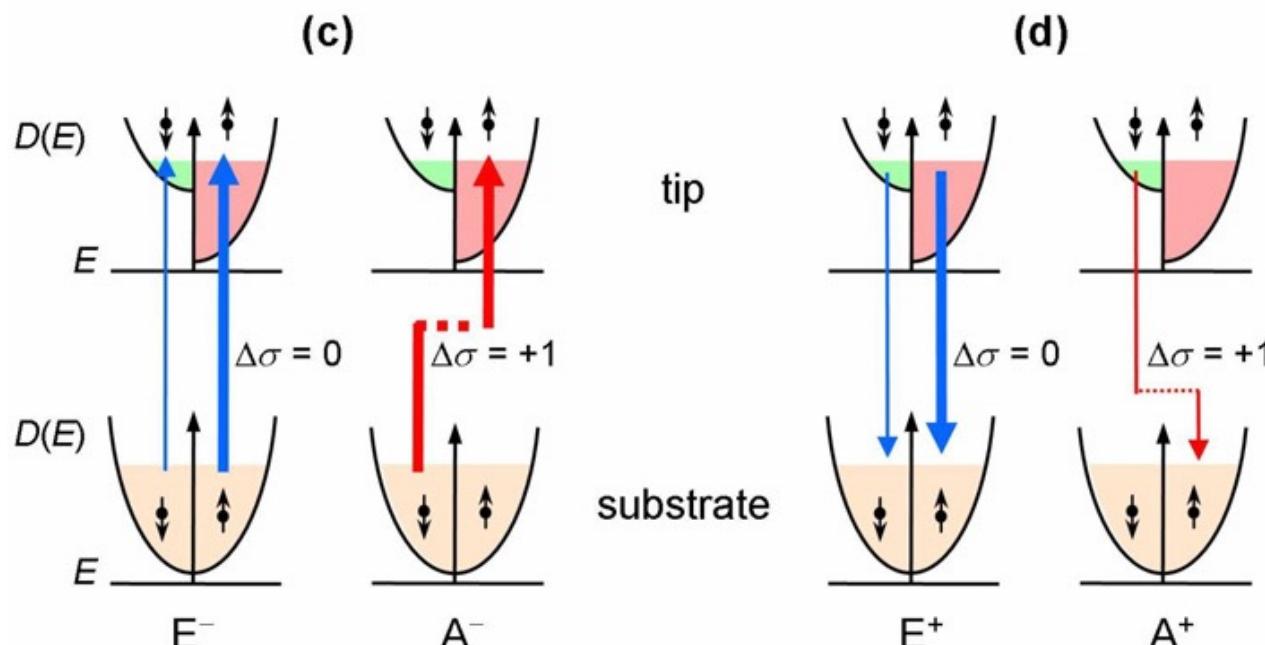
free Mn atom: $[Ar]3d^5 4s^2$

$$S = \frac{5}{2}, L = 0$$

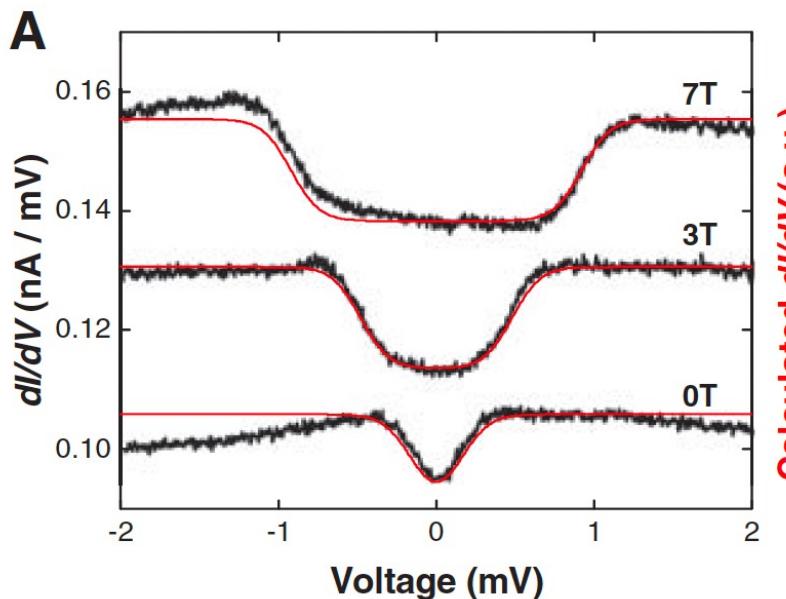
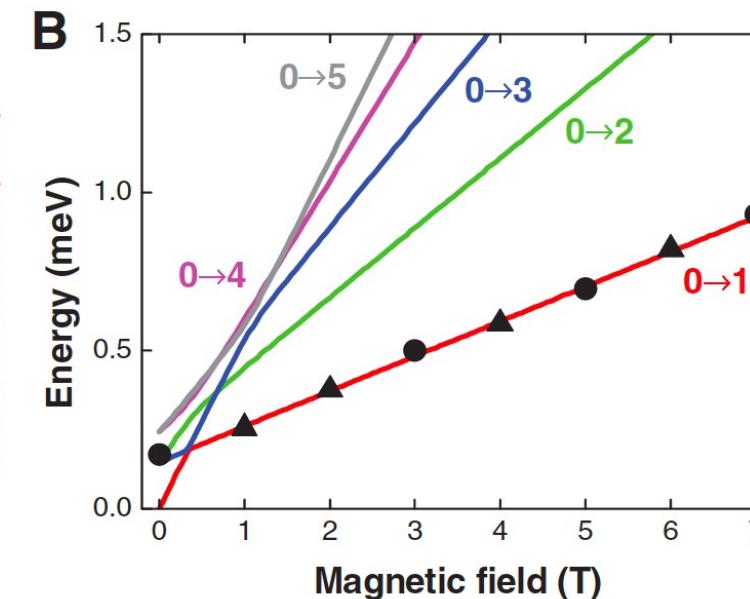
$$\Delta\sigma = +1$$

$$\Delta m = -1$$

$$\Delta E \neq 0$$



Example: Mn/Cu₂N/Cu(100)

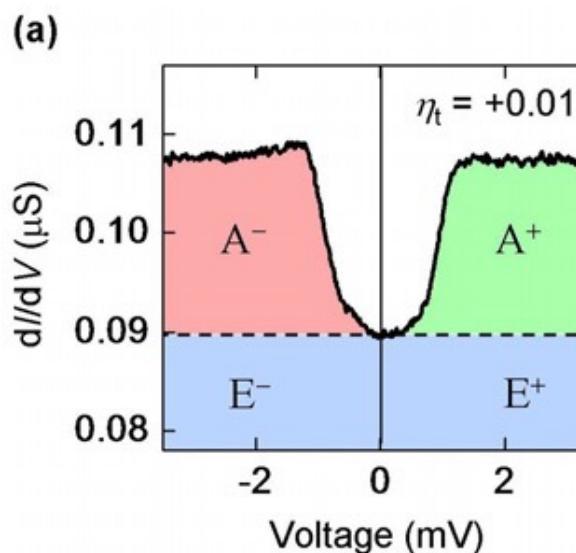
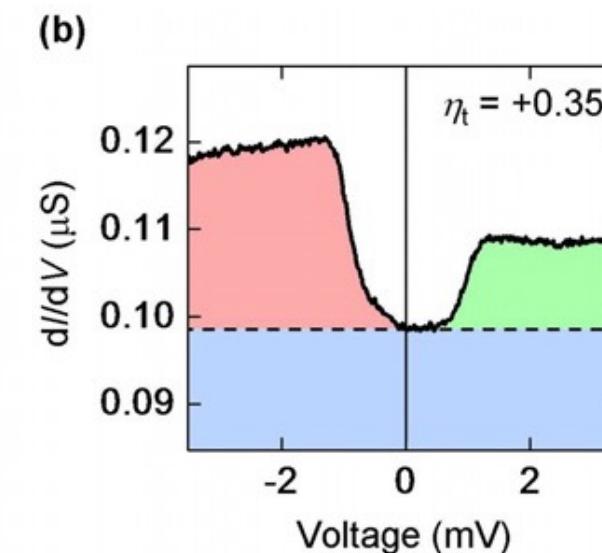
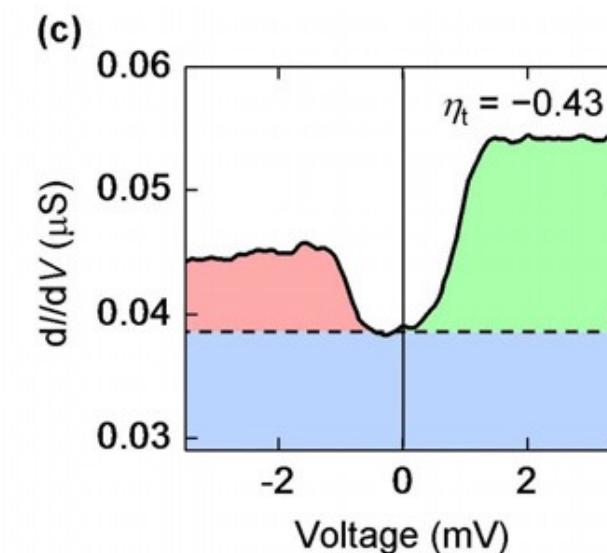


easy axis oriented out-of-plane

$$g = 1.90$$

$$D = -0.039 \text{ meV}$$

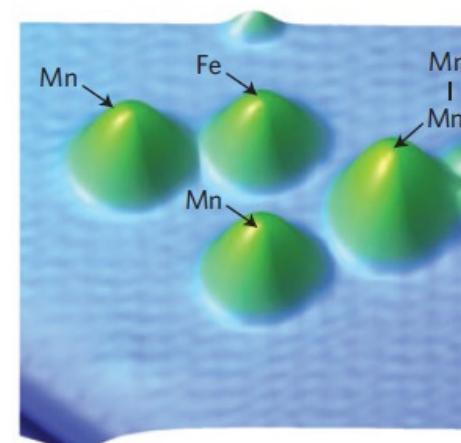
$$E = 0.007 \text{ meV}$$



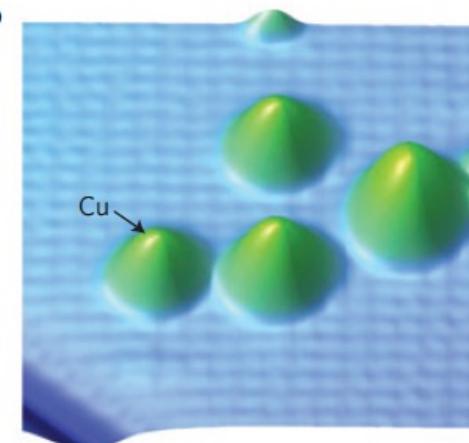
Example: Mn/Cu₂N/Cu(100)

Controlling the state of quantum spins with electric currents

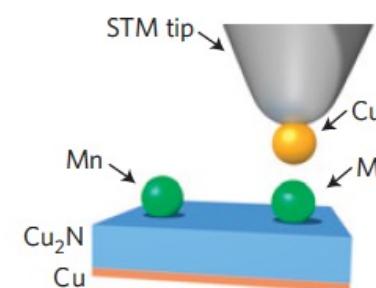
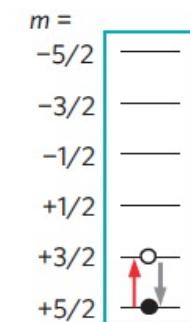
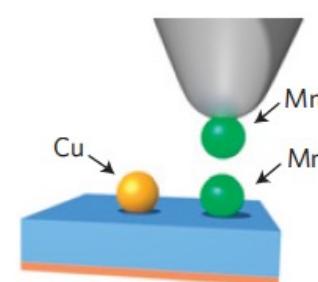
a



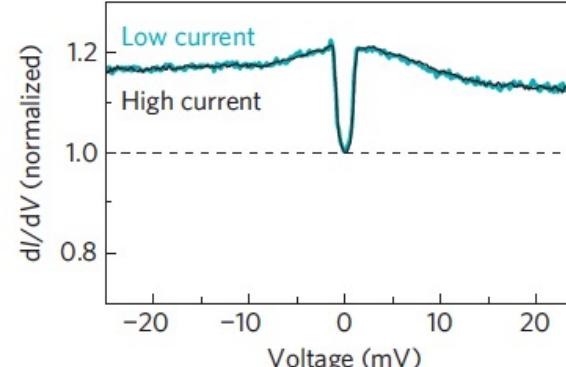
b



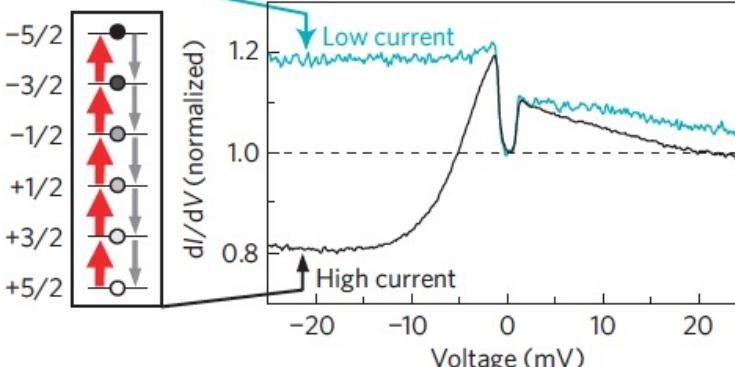
See exercise: 9.2



c



d

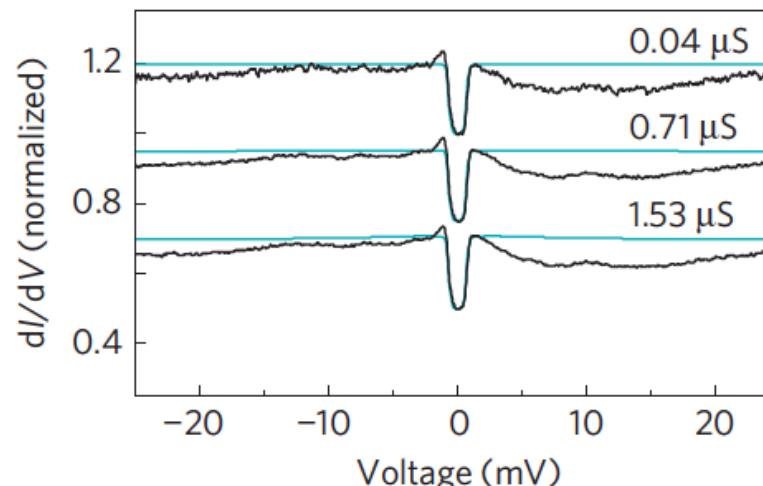


$$B = 7 \text{ T}$$
$$T = 0.6 \text{ K}$$

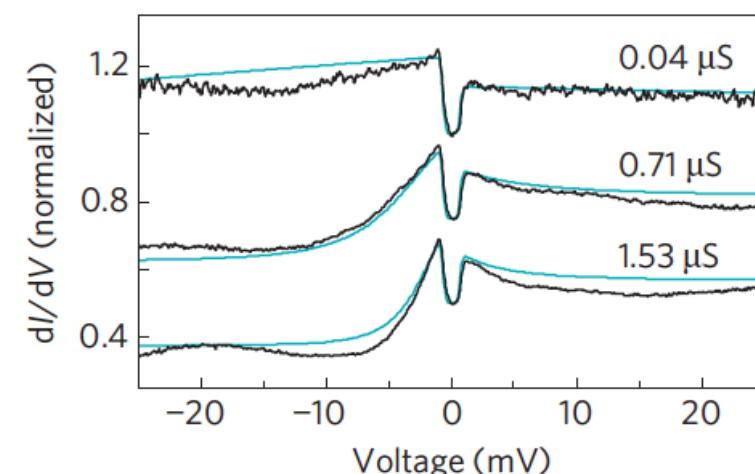
Example: Mn/Cu₂N/Cu(100)

EPFL

b



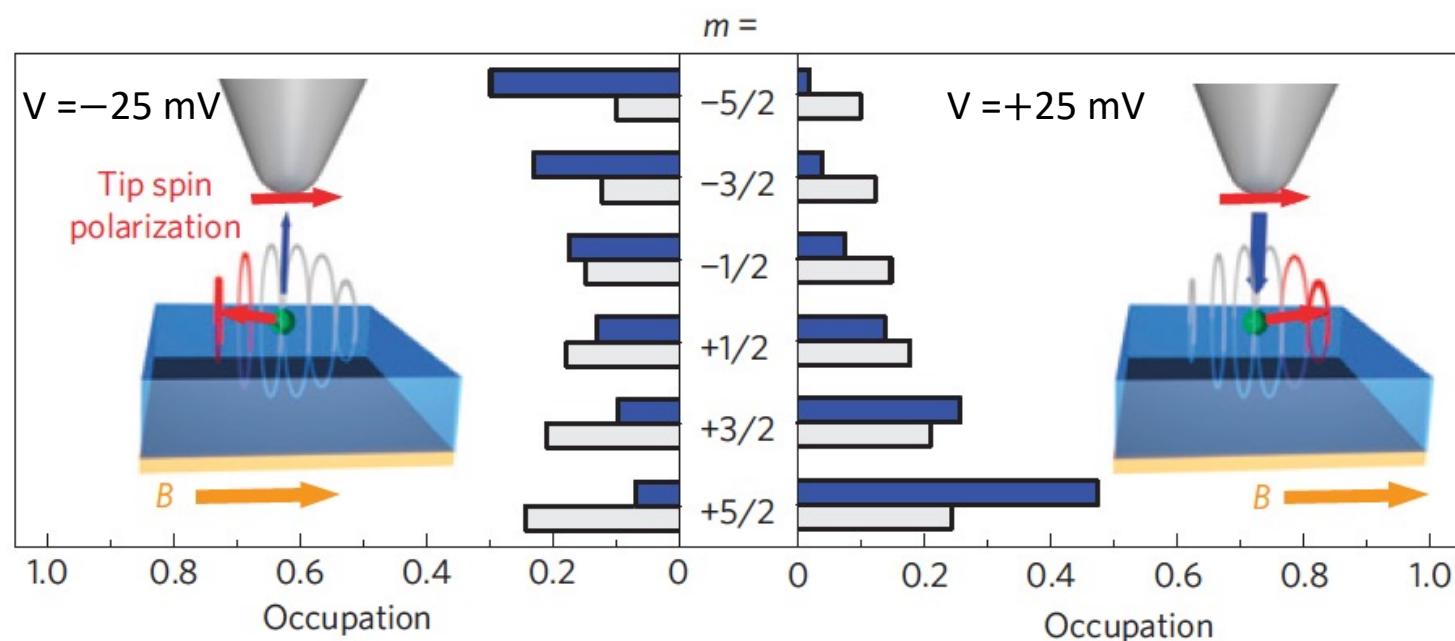
a

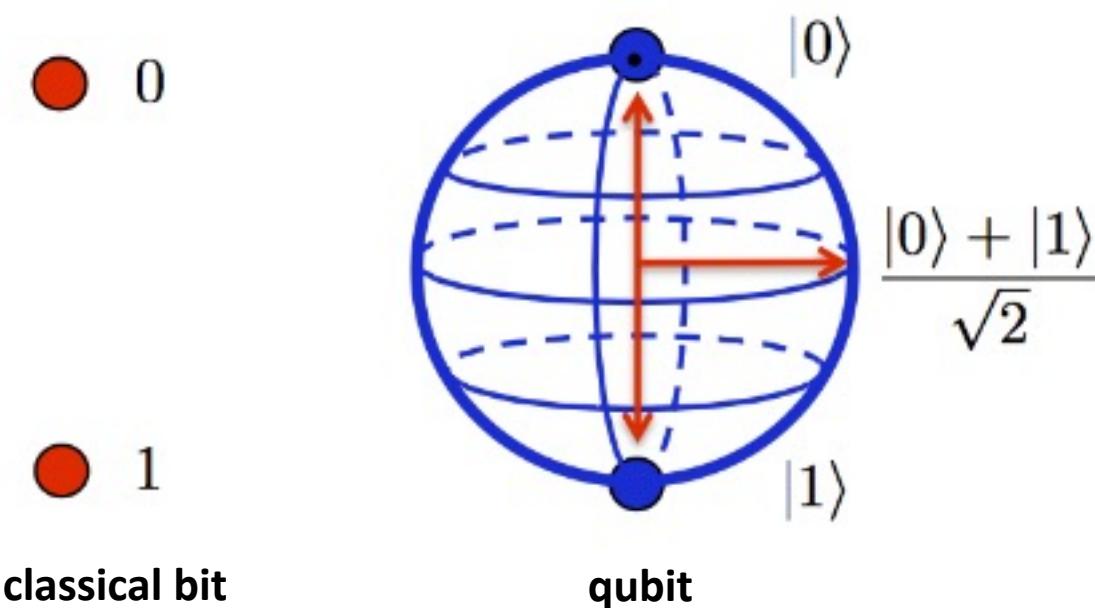


$B = 7 \text{ T}$

$T = 0.6 \text{ K}$

c





Two-level system

Representation using the Bloch sphere

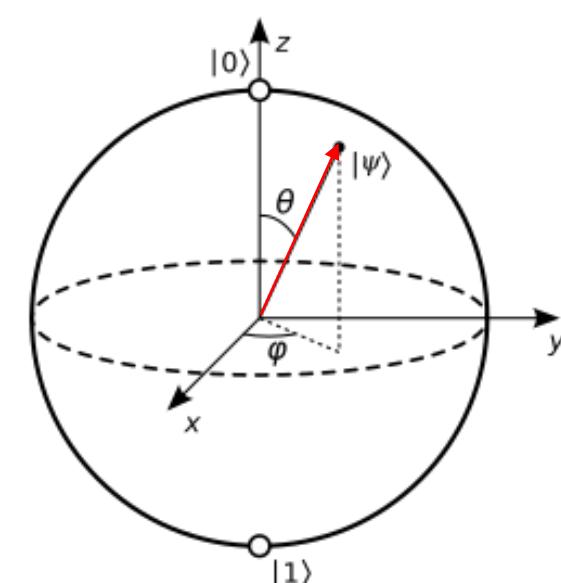
The coherent superposition state
is a linear combination of states $|0\rangle$ and $|1\rangle$

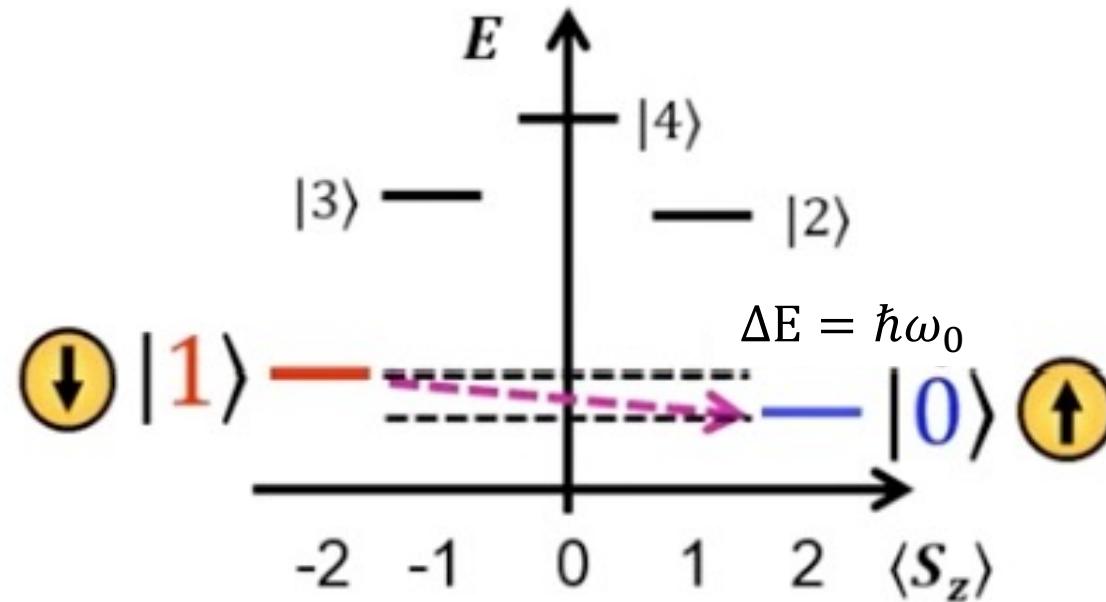
$$|\psi\rangle = \alpha|0\rangle + \beta|1\rangle$$

with $|\alpha|^2 + |\beta|^2 = 1$

$$\alpha = \cos \frac{\theta}{2}$$

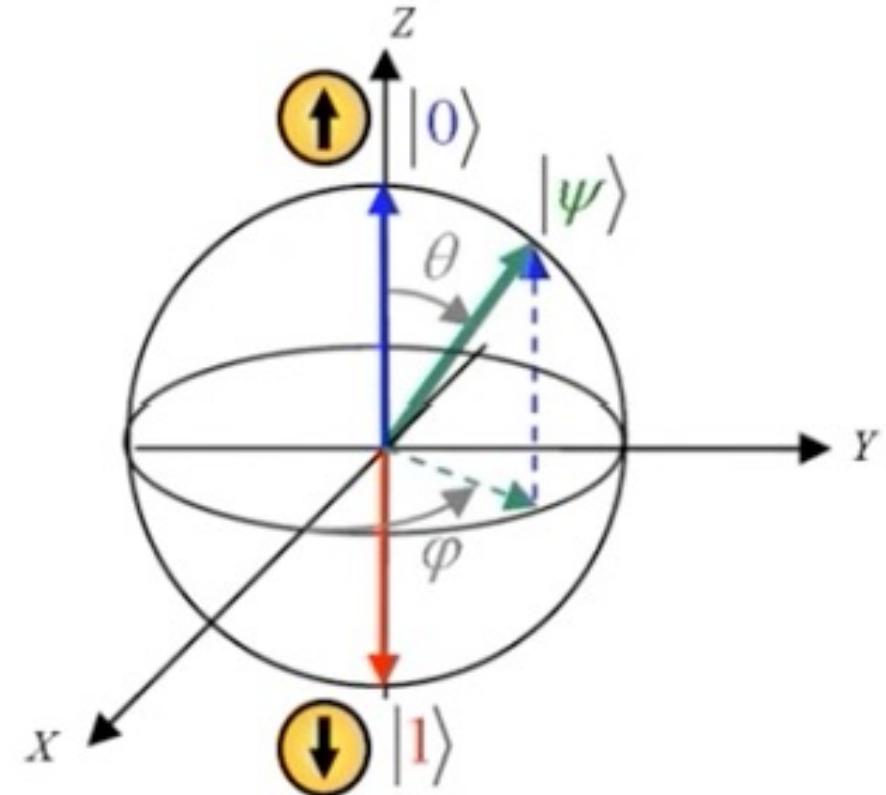
$$\beta = e^{i\varphi} \cos \frac{\theta}{2}$$



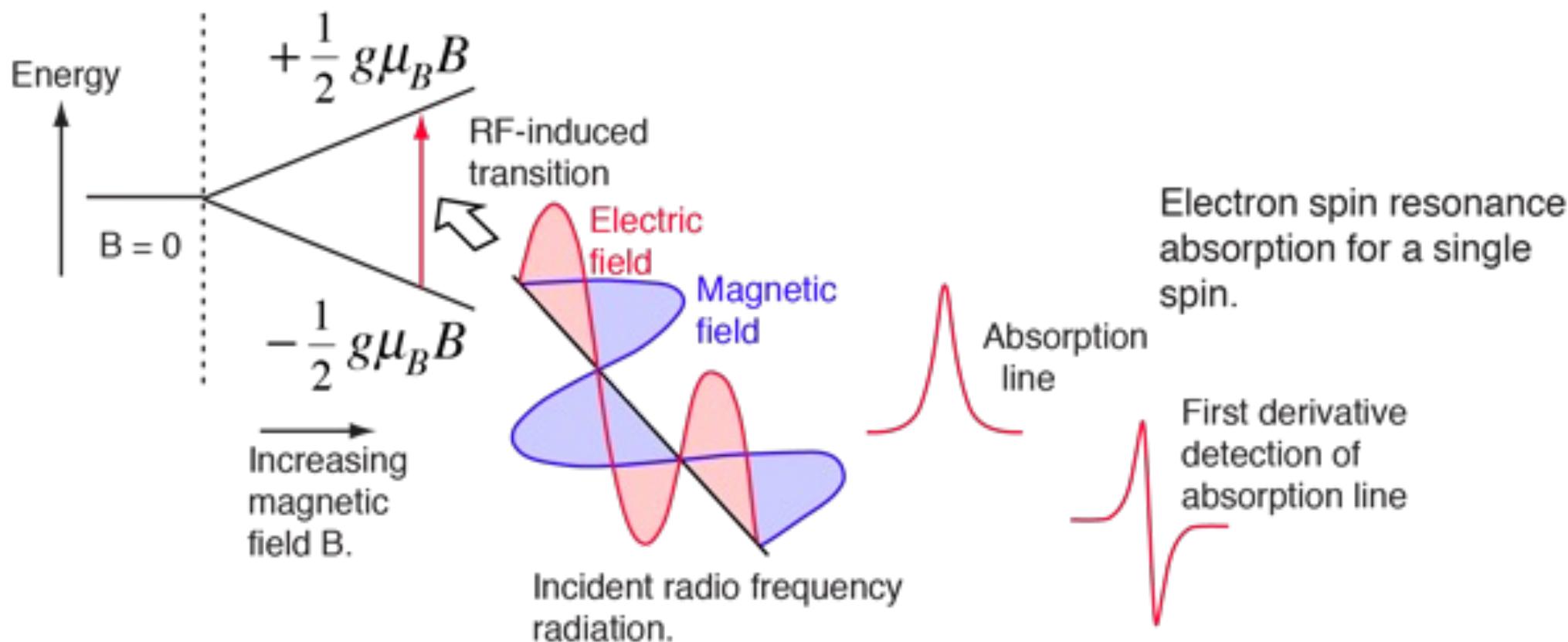


Energy relaxation time T_1
lifetime of state $|1\rangle$

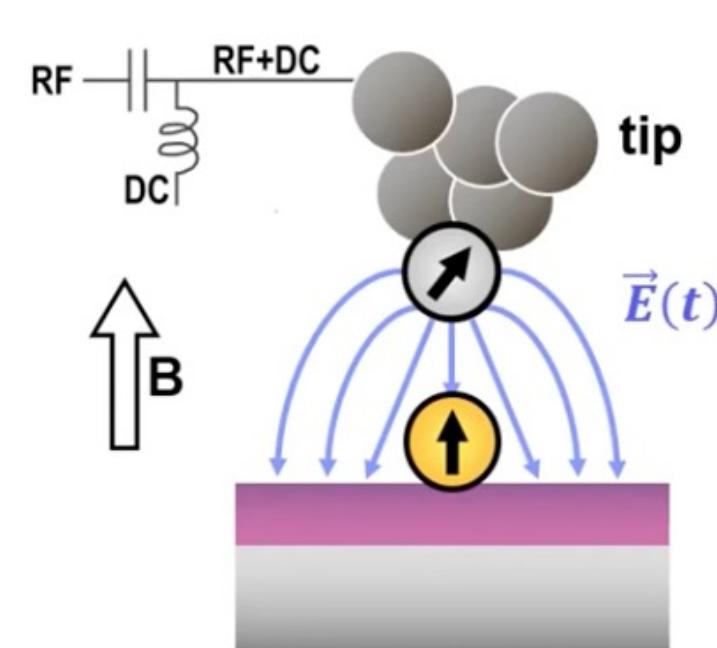
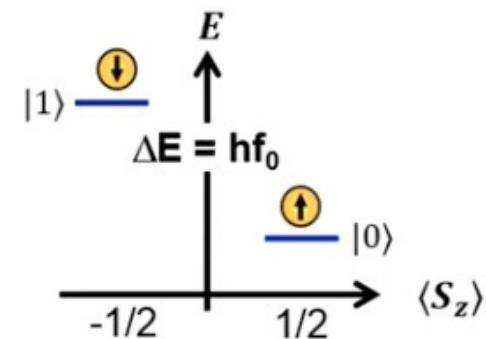
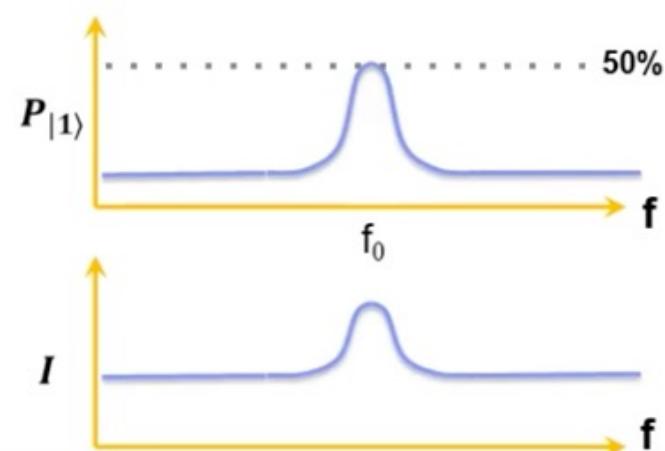
$$|\psi\rangle = a|0\rangle + b|1\rangle$$



Spin coherence time T_2
lifetime of the superposition state $|\psi\rangle$
(including phase)



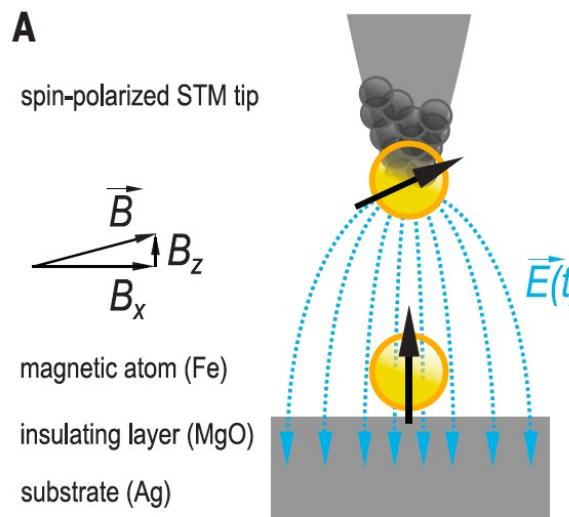
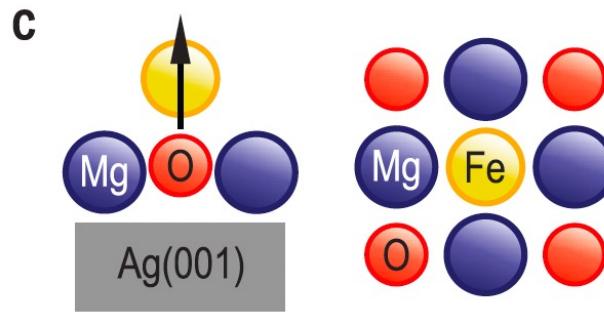
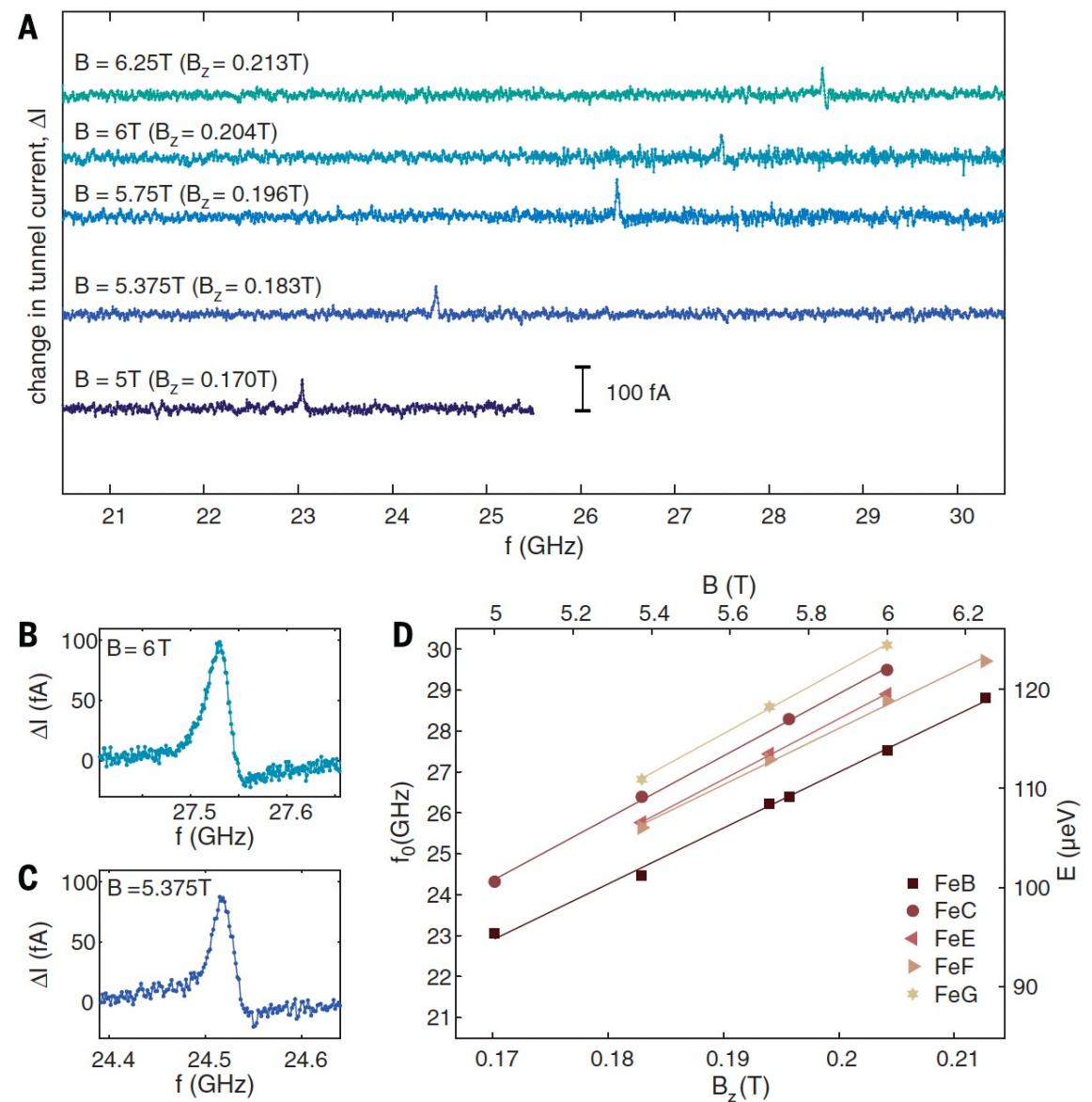
Peak in absorption at the frequency corresponding to the difference in energy



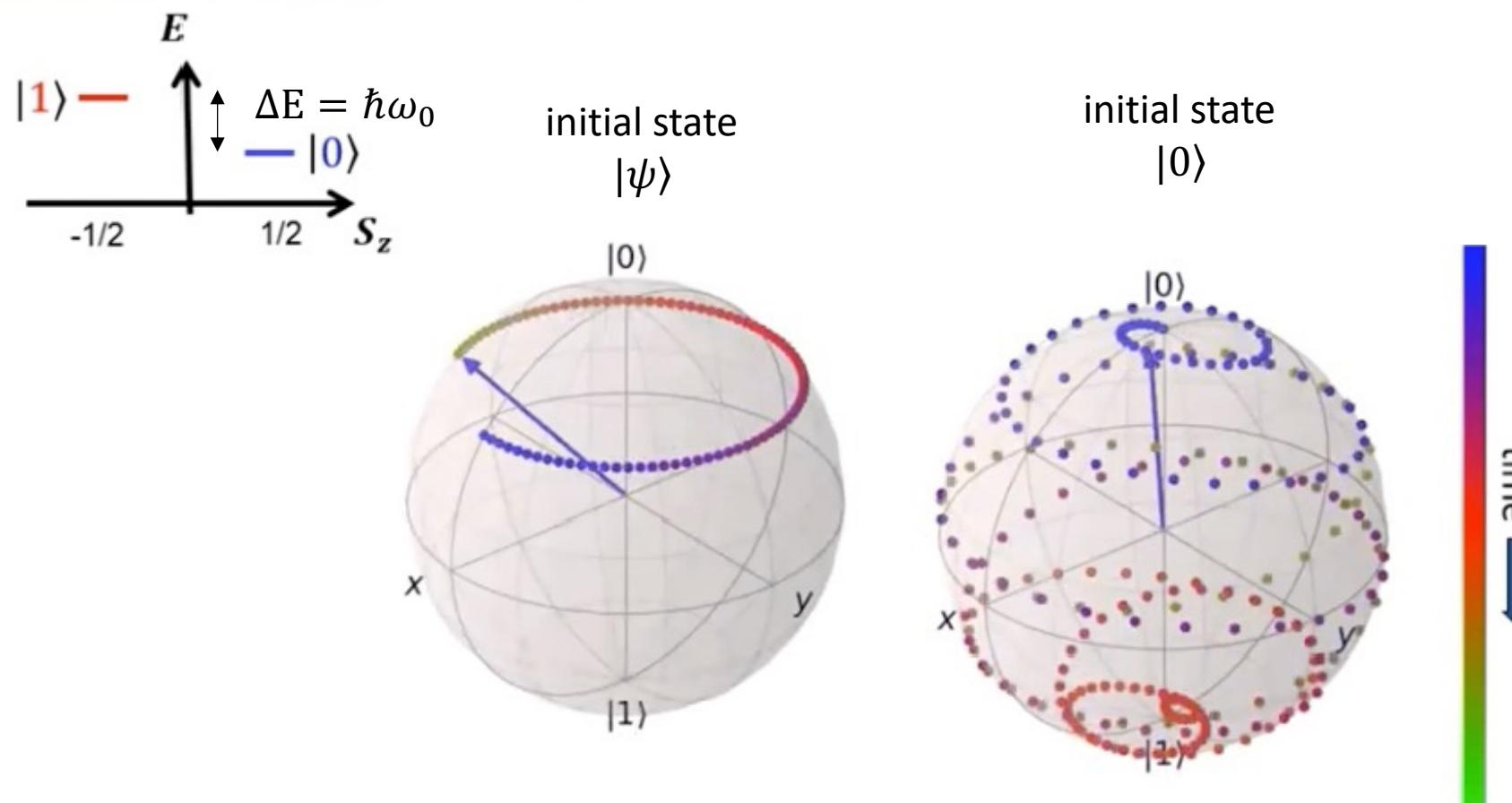
detection by SP-STM

Example: Fe/MgO/Ag(100)

EPFL



ESR - Rabi oscillations

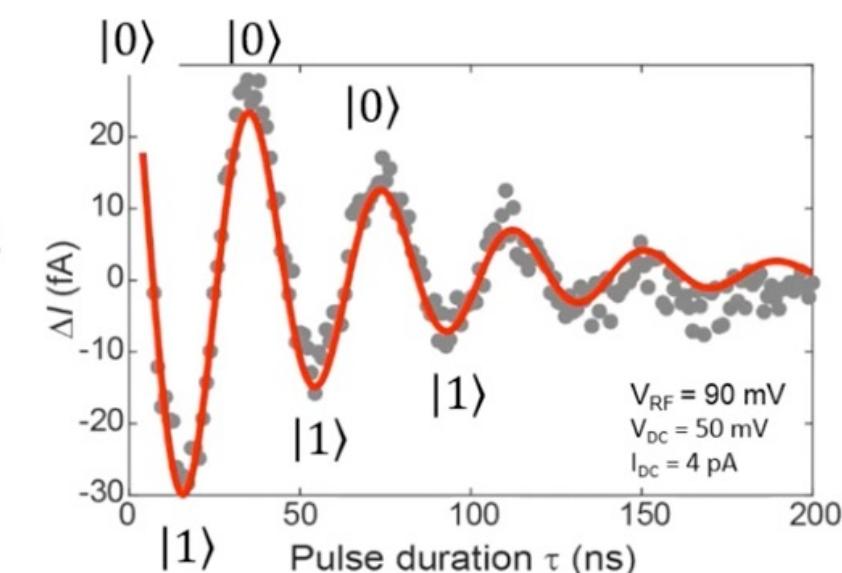


$$H_0 \propto B_0 S_z$$

+

$$H_1 \propto B_1 S_x \cos(\omega_0 t)$$

oscillating driving field



→ Rabi oscillation
(z projection of the spin vs time)

decay → coherence time T_2

