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Spintronics: Basics and Applications

Lecture 9

Spin dynamics and spin-transfer-torque 
at atomic scale



The spintronics “goose game”
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Scanning tunneling microscopy (STM)
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𝜅 =
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in region II (classically forbiden), exponential decay:
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𝜓 𝑧 = 𝜓 0 𝑒"#$
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Scanning tunneling microscopy (STM)
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eq tunneling current:
(𝑘!𝑇 ≪ 𝑒𝑉)

𝐼 ∝ 2
!

'(

𝜌) 𝐸* − 𝑒𝑉 + 𝜀 𝜌+ 𝐸* + 𝜀 𝑀(𝜀) &𝑑𝜀

tip density of states sample density of states tunneling probability
∝ exp(−2𝜅𝑑)

figure adapted from http://dx.doi.org/10.1016/j.susc.2014.07.014



Inelastic electron tunneling spectroscopy (IETS)
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Consider an object at the surface (molecule, adatom, nanostructure...).
The tunneling electrons trigger an excitation of the adsorbate (vibration, rotation, spin flip, 
magnetic excitation...): they couple to the excitation mode  and loose part of their energy; an 
additional tunneling channel is created. 
This results in an increase of the tunneling current with respect to the elastic channel. 

An inelastic tunneling channel opens, at 
a specific energy, in addition to the 
elastic one. The inelastic feature is 
present in both bias polarities.



IETS: spin excitations
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Δ𝜎 = ∓1
Δ𝑚 = ±1
Δ𝐸 ≠ 0

Loth et al., New J. Phys. 12 125021 (2010) 

Δ𝜎 = 0
Δ𝑚 = 0
Δ𝐸 ≠ 0

Δ𝜎 = 0
Δ𝑚 = 0
Δ𝐸 = 0

⟩|𝑆,𝑚

⟩|1/2, 𝜎

hamiltonian for s-e scattering: 𝐽789 𝑆:𝜎: + 1/2 𝐽789 ( 𝑆;𝜎< + 𝑆<𝜎;)

Energy

Energy
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IETS: spin excitations

𝑆 = 2; 𝑚 = −2, . . , 2

An inelastic tunneling process can involve energy and momentum transfer from the tunneling 
electron to the atom spin which flips from the ground to an excited state. 

Zeeman energy for a paramagnetic spin | ⟩𝑆,𝑚
(magnetic moment 𝝁 = −𝑔𝜇,𝑺 )

e- (𝜎 = −1/2)

Tip

e- (𝜎 = +1/2)

Tip

𝑚

𝑚 − 1

𝑩

Δ𝜎 = +1 → Δ𝑚 = −1

e𝑉789?@ = 𝑔𝜇A𝐵

we expect:

Δ𝐸

𝐸

𝐵

𝑚 = 2

𝑚 = 1

𝑚 = 0

𝑚 = −2

𝑚 = −1

𝑚

Δ𝐸 = |𝑔𝜇A𝐵|

𝐻-'' = 𝑔𝜇,𝑺 B 𝑩

𝐸 𝑚 = 𝑔 𝜇,𝑚 𝐵

Δ𝐸 = |𝑔𝜇,𝐵 Δ𝑚|

example: 



𝐸

𝐵

𝐸

𝑚 = 5/2

𝑚 = 3/2

Example: Mn/Al2O3
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Mn/Al2O3/Ni3Al(111)
T = 0.6 K

Shift of the spin-flip conductance step 
with magnetic field

𝑔 = 1.88

𝑔 = 2.12 (Mn atom near 
the edge of an Al2O3 patch)

𝑔 is the Landé g-factor. 

𝑔 =
3
2
+
𝑆 𝑆 + 1 − 𝐿(𝐿 + 1)

2𝐽(𝐽 + 1)

For 𝐿 = 0 → 𝑔 = 2

Heinrich et al., Science 2004 10.1126/science.1101077

free Mn atom: [Ar]3d5 4s2

𝑆 =
5
2 , 𝐿 = 0

weak influence of the crystal field (local environment)

e𝑉789?@ = 𝑔𝜇A𝐵

𝑚 = 1/2

10.1126/science.1101077


Crystal field: Effect of D and E parameters (C2v)
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E

B||z

E

B||z

D < 0, E ≠ 0

Energy spectrum: example for  𝑆 = 2

CF = 0 axial CF

E

B||z

D < 0, E = 0

𝑚 = ±2

𝑚 = ±1

𝑚 = 0

distorted (C2v) CF

𝐻7HH = 𝑔:𝜇A 𝐻:𝑆: + 𝐷𝑆:I + 𝐸(𝑆8I − 𝑆JI)



Example: Fe/Cu2N/Cu(001)
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Cu
N

Fe

E

B||Z

D < 0, E ≠ 0 missing

free Fe atom: [Ar] 3d6 4s2

𝑆 = 2, 𝐿 = 2

𝐻'.. = 𝑔𝜇,𝑆$𝐵 + 𝐷𝑆$& + 𝐸 𝑆/& − 𝑆0&

𝑧 is in the plane, along the N-row (magnetization easy axis)

E

B||z

D < 0, E = 0

𝑚 = ±2

𝑚 = ±1

𝑚 = 0

Hirjibehedin et al., Science 317, 1199 (2007)



Example: Fe/Cu2N/Cu(001)
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𝑆 integer, 𝐸 ≠ 0 → quantum tunneling: at 𝐵 = 0 the ground state Ψ" (and Ψ#) is a superposition of | ⟩+2 and | ⟩−2 →
𝑆$ = 0

𝐵 splits the states (i.e. the states are almost pure) and restore a moment: at 𝐵 = 7 T → 𝑆$ = ±2

𝑇1~ ℎ/(∆𝐸) = 200 ns (𝐵 = 0 T) → very short spin lifetime

Eigenstates |Y𝑖ñ and eigenvalues 𝐸𝑖 of H for a given field 𝐵

Eigenvalues

sz

s-,s+

𝑆 = 2, 𝑔 = 2.11, 𝐷 = −1.55 meV, 𝐸 = 0.31 meV

0 meV
0.18 meV
3.90 meV
5.76 meV
6.56 meV

Hirjibehedin et al., Science 317, 1199 (2007)



Example: Fe/Cu2N/Cu(001)
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Cu

N

Cu

N

B

Fe

Fe

B

Spectra depend on 𝐵 field direction → magnetic anisotropy

Hirjibehedin et al., Science 317, 1199 (2007)



MRAM: downscaling to single atom?  

13Science 282, 1660 (1998); Nat. mater. 6, 813 (2007)

Reading: by measuring the point contact resistance between a bit and a 
word line 

Writing: by magnetic fields (toggle-MRAM) or by injecting spin polarized 
current i.e. spin transfer torque (STT-MRAM) through the point contact

https://doi.org/10.1063/5.0075945

https://doi.org/10.1063/5.0075945


Spin-polarized STM
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R. Wiesendanger group 
http://www.nanoscience.de/HTML/methods/sp-stm.html

𝐼 ∝ 𝐼↑ + 𝐼↓

At fixed bias and tip-sample distance, the tunneling 
current changes depending on the alignment of tip 
and sample magnetization

The tunneling current is the sum of two contributions

Junction spin polarization:
(magnetoresistance) 

𝑃 =
𝐼&'(& − 𝐼)*+

𝐼&'(& + 𝐼)*+

𝑃 ~𝑃,'- 𝑃./0-)1 cos 𝜃

determination of the orientation (𝜃) of the 
sample magnetization with respect to the one 
of the tip 



Spin-polarized STM: reading the spin state of a single atom
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at constant height 

measurement vs. time: 
• a change in the orientation of the atom magnetization is detected as a change in current (telegraph signal, 

magnetic contrast)
• determination of the spin lifetime

high current low current

tunneling current

eVbias <
eVthreshold

E



eV02 = 3|𝐷|eV13

Example C4v: Fe/MgO/Ag(100)

16S. Baumann et al. Phys. Rev. Lett. 115, 237202 (2015), W. Paul et al., Nat. Phys. 13, 403 (2017)

free Fe atom: [Ar]3d6 4s2

𝑆 = 2, 𝐿 = 2

The zero-field splitting between state 0 and state 1 due to the 
transverse term 𝐶 is too small to be detected at 𝑇 = 0.6 K

𝐷 = − 4.7 meV, 𝐶 = 41 neV,   𝑔 = 2.6

Energy

ground and first excited state | ⟩0 , | ⟩1 : 𝑆$ ≈ ±2

𝐻'.. = 𝑔𝜇,𝑆$𝐵 + 𝐷𝑆$& + 𝐶 𝑆"3 + 𝑆43

𝑧 is perpendicular to the surface



Fe/MgO/Ag(100): telegraph signal

Telegraph signal

lifetime T1 = (switching rate)-1

17W. Paul et al., Nat. Phys. 13, 403 (2017)

𝐵 = 2.5 T

𝑇 = 1.2 K

𝑉"#$% = 10mV

small but finite overlap →  
0 𝑆! 1 " ≠ 0
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Due to the C4v CF, | ⟩0 and | ⟩1 are not pure states → 
QTM → 𝑇1 = 0 at 𝐵 = 0 T

The external field B restores the pure spin states → no QTM 
→ longer 𝑇1

Increasing the MgO thickness, 𝑇1 increases due to 
reduced scattering with the electrons of the 
supporting Ag(100) crystal

𝐵 = 5 T

Fe/MgO/Ag(100): spin lifetime

2 ML MgO

C = 41 neV
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STT at the single atom scale: writing the spin state

19

tunneling current

Vbias <  Vthreshold Vbias >  Vthreshold

Natterer et al., Nature 543, 226 (2017); Natterer et al., Phys. Rev. Lett. 121, 027201 (2018); Forrester et al., Rev. Sci. Instrum. 89, 123706 (2018) 

Ho / MgO / Ag(100)

4f10:
S=2
L=6
J=8

See exercise: 9.1

T = 4.7 K
I =100 pA
B ~10 mT
(tip stray field)



STT at the single atom scale: writing the spin state

20

current pulse at 𝑉2'/. = 150 mV to write the spin state

Natterer et al. Phys. Rev. Lett. 121, 027201 (2018) 

𝐵 = 4 T

𝑇 = 4.3 K

𝑉"#$% = 150mV

at T = 45 K spontaneous switching starts to appear

𝑉2'/. = 50 mV to read 
(monitor) the spin state

Ho / MgO / Ag(100)



Spin-dependent IETS – Spin transfer torque
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free Mn atom: [Ar]3d5 4s2

𝑆 =
5
2
, 𝐿 = 0

| ⟩𝑆,𝑚

Δ𝜎 = +1
Δ𝑚 = −1
Δ𝐸 ≠ 0

Loth et al., New J. Phys. 12 125021 (2010) 



Example: Mn/Cu2N/Cu(100)
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𝐷 = –0.039 meV
𝐸 = 0.007 meV

easy axis oriented out-of-plane

𝑔 = 1.90

Hirjibehedin et al., Science 317, 1199 (2007); Loth et al., New J. Phys. 12 125021 (2010)  



Example: Mn/Cu2N/Cu(100)

23Loth et al., Nature Phys. 2010 10.1038/NPHYS1616

𝐵 = 7 T
𝑇 = 0.6 K

See exercise: 9.2

Controlling the state of 
quantum spins with 
electric currents

10.1038/NPHYS1616


Example: Mn/Cu2N/Cu(100)
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Time-average occupation 
probabilities of the six Mn spin 
states for high tunnelling current 
from the spin-polarized tip (blue) 
and the spin-averaging tip (grey) 

V =−25 mV V =+25 mV

𝐵 = 7 T
𝑇 = 0.6 K



25

Classical bits vs qubits

qubit

Two-level system

Representation using the Bloch sphere

The coherent superposition state 
is a linear combination of states | ⟩0 and | ⟩1

| ⟩𝜓 = 𝛼| ⟩0 + 𝛽| ⟩1

with |𝛼|3 + |𝛽|3 = 1

classical bit

𝛼 = cos
𝜃
2

𝛽 = 𝑒'4 cos
𝜃
2

https://en.wikipedia.org/wiki/Qubit
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Single atoms at surfaces as qubits

Courtesy of Andreas J. Heinrich, QNS Seoul 

Energy relaxation time T1
lifetime of state | ⟩1

Spin coherence time T2
lifetime of the superposition state | ⟩𝜓
(including phase)

ΔΕ = ℏ𝜔!
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Electron Spin Resonance (ESR)

Hyperphysics

Peak in absorption at the frequency corresponding to the difference in energy 
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ESR combined with STM 

Courtesy of Andreas J. Heinrich, QNS Seoul 

detection by SP-STM
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Example: Fe/MgO/Ag(100)

S. Baumann et al., Science 350, 417 (2015)
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ESR - Rabi oscillations 

𝐻" ∝ 𝐵"𝑆$ 𝐻# ∝ 𝐵#𝑆5 cos(𝜔"𝑡)+ → Rabi oscillation
(z projection of the spin vs time)

Courtesy of Andreas J. Heinrich, QNS Seoul 

decay → coherence time T2

oscillating driving field

initial state
| ⟩𝜓

initial state
| ⟩0

ΔΕ = ℏ𝜔"
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An atomic-scale multi-qubit platform

Wang et al., Science 382, 87 (2023)


