Spintronics: Basics and Applications “PFL

Lecture 9

Spin dynamics and spin-transfer-torque
at atomic scale
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Scanning tunneling microscopy (STM) “P-L

Plane wave
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in region |l (classically forbiden), exponential decay:

Y(z) = P(0)e ™

with K = \/zm(‘fio _ E)

in particular Y(d) = P(0)e *

- tunneling probability o< [ (d)|? = | (0)|?e 2%



Scanning tunneling microscopy (STM) “P-L
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figure adapted from http://dx.doi.org/10.1016/j.susc.2014.07.014



Inelastic electron tunneling spectroscopy (IETS) “PFL
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Consider an object at the surface (molecule, adatom, nanostructure...).

The tunneling electrons trigger an excitation of the adsorbate (vibration, rotation, spin flip,
magnetic excitation...): they couple to the excitation mode and loose part of their energy; an
additional tunneling channel is created.

This results in an increase of the tunneling current with respect to the elastic channel.

An inelastic tunneling channel opens, at
a specific energy, in addition to the
elastic one. The inelastic feature is
present in both bias polarities.



IETS: spin excitations

hamiltonian for s-e scattering: Joyc S,0, +1/2 Jope (Sy0_ + S_0y)
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IETS: spin excitations

EPFL
Zeeman energy for a paramagnetic spin |S, m)
(magnetic moment 4 = —gugs )
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An inelastic tunneling process can involve energy and momentum transfer from the tunneling
electron to the atom spin which flips from the ground to an excited state.



Example: Mn/Al,O, “PFL
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Heinrich et al., Science 2004 10.1126/science.1101077 weak influence of the crystal field (local environment) 3


10.1126/science.1101077

Crystal field: Effect of D and E parameters (C,,) “PFL
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Energy spectrum: example for § = 2
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Example: Fe/Cu,N/Cu(001) “PFL

free Fe atom: [Ar] 3d® 4s2
S=2,L=2

++++4

di/dV (a.u.)

Hesr = gupS,B + DS + E(S2 — 53) =300 mK, =0T

-10 -5 0 5 10

Z is in the plane, along the N-row (magnetization easy axis)
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Hirjibehedin et al., Science 317, 1199 (2007) 10



m Example: Fe/Cu,N/Cu(001) “PFL

Eigenstates |'¥;) and eigenvalues E; of H for a given field B

Eigenstate [+2) [+1) [+0) I-1) [—2) Eigenvalues
B=0T

Vo o, 0.697 0 —0.166 0 0.697 0 ey

W1 0.707 0 0 0 —0.707 018 meV

s C.,0 0 0.707 0 ~0.707 0 390 meV

Y3 0 0.707 0 0.707 0 5.76 meV v

Vs 0.117 0 0.986 0 0.117 6.56 meV v
B=7T

Vo -~ 0.021 0 —0.097 0 0.995

V1 “» 0.987 0 —0.157 0 —0.036

/7 0 0.402 0 —0.916 0

W3 0 0.916 0 0.402 0

WYy 0.159 0 0.983 0 0.092

S=2,9g=211,D = —1.55meV, E = 0.31 meV

S integer, E + 0 — quantum tunneling: at B = 0 the ground state ¥, (and ¥;) is a superposition of |[+2) and |—2) —
<SZ> =0
B splits the states (i.e. the states are almost pure) and restore a moment:atB = 7T — (S,) = +2

Ti~ h/(AE) = 200 ns (B = 0T) - very short spin lifetime Hirjibehedin et al., Science 317, 1199 (2007) 11



Example: Fe/Cu,N/Cu(001)

Spectra depend on B field direction - magnetic anisotropy
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MRAM: downscaling to single atom?

“Bit” lines

a)
: Tunnel
Ferromagnetic — T
electrodes
IIOII '/ 'I '/
Low resistance state High resistance state
b)

“Word” lines il

Reading: by measuring the point contact resistance between a bit and a
word line

Writing: by magnetic fields (toggle-MRAM) or by injecting spin polarized
current i.e. spin transfer torque (STT-MRAM) through the point contact

Science 282, 1660 (1998); Nat. mater. 6, 813 (2007) https://doi.org/10.1063/5.0075945

VIEW LARGE DOWNLOAD SLIDE

(a) SEM picture shows the wafer surface for high density processing at an intermediate processing
step. The pillar structures are shown after photoresist and reactive ion etching of the hard mask
layer. The hard mask layer protects the pMTJ structure during the ion beam etching. (b) The cross
section of the high density pillars after they are formed. The pillar diameters are ~25 nm with

~60 nm pitch, demonstrating capabilities to make high density chips.

=PrFL

13


https://doi.org/10.1063/5.0075945

Spin-polarized STM “P-L

The tunneling current is the sum of two contributions

parallel JJ ﬂ

o< IT+ It

At fixed bias and tip-sample distance, the tunneling
current changes depending on the alignment of tip
and sample magnetization
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t
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R. Wiesendanger group
http://www.nanoscience.de/HTML/methods/sp-stm.html 14




Spin-polarized STM: reading the spin state of a single atom “PFL

‘ tunneling current

at constant height high current low current

measurement vs. time:

I \I/ E | (He)

m|;

* achange in the orientation of the atom magnetization is detected as a change in current (telegraph signal,

magnetic contrast)
* determination of the spin lifetime

15



Example C,,: Fe/MgO/Ag(100) “PFL

free Fe atom: [Ar]3d® 4s2
S=2L=2

Herr = gupS,B + DSZ + C(S2 4+ SP)
z is perpendicular to the surface

D=—-47meV, C = 41neV, g =2.6

ground and first excited state |0),|1): (S,) = +2

(a) Energy A
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The zero-field splitting between state 0 and state 1 due to the
transverse term C is too small to be detected at T = 0.6 K

S. Baumann et al. Phys. Rev. Lett. 115, 237202 (2015), W. Paul et al., Nat. Phys. 13, 403 (2017) 16



Fe/MgO/Ag(100): telegraph signal “PFL
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W. Paul et al., Nat. Phys. 13, 403 (2017) 17



Fe/MgO/Ag(100): spin lifetime “PFL
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STT at the single atom scale: writing the spin state

EPFL

See exercise: 9.1
Ho / MgO / Ag(100)
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Natterer et al., Nature 543, 226 (2017); Natterer et al., Phys. Rev. Lett. 121, 027201 (2018); Forrester et al., Rev. Sci. Instrum. 89, 123706 (2018)
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STT at the single atom scale: writing the spin state “PFL

............ -~ @ r-43x Ho/MgO /Ag(100)
iR s —ar
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Natterer et al. Phys. Rev. Lett. 121, 027201 (2018)



Spin-dependent IETS — Spin transfer torque “PFL
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Loth et al., New J. Phys. 12 125021 (2010) 21
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Example: Mn/Cu,N/Cu(100)
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Example: Mn/Cu,N/Cu(100) “PFL

b

See exercise: 9.2

Controlling the state of
guantum spins with
electric currents
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Loth et al., Nature Phys. 2010 10.1038/NPHYS1616
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10.1038/NPHYS1616

Example: Mn/Cu,N/Cu(100)
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states for high tunnelling current
from the spin-polarized tip (blue)
and the spin-averaging tip (grey)
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Classical bits vs qubits “P=L

0) Two-level system

-=-tFr=-a Representation using the Bloch sphere

The coherent superposition state
is a linear combination of states |0) and |1)

@ ! ' 1)

classical bit qubit

) = a|0) + B|1)

with |a|2 + |B|2 = 1

a = COS—

B = e cos

|1)

https://en.wikipedia.org/wiki/Qubit 25



Single atoms at surfaces as qubits “PFL

) = al0) + b|1)

Energy relaxation time T, Spin coherence time T,
lifetime of state |1) lifetime of the superposition state )
(including phase)

Courtesy of Andreas J. Heinrich, QNS Seoul 26



Electron Spin Resonance (ESR)

=PrFL

Hyperphysics
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First derivative
detection of
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E

Peak in absorption at the frequency corresponding to the difference in energy

27



ESR combined with STM

=PrFL

Courtesy of Andreas J. Heinrich, QNS Seoul

detection by SP-STM

28



Example: Fe/MgO/Ag(100) “PFL
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S. Baumann et al., Science 350, 417 (2015) 29



ESR - Rabi oscillations

=PrFL
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Courtesy of Andreas J. Heinrich, QNS Seoul
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An atomic-scale multi-qubit platform

Wang et al., Science 382, 87 (2023)
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